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Motivation Why Stochastic Geometry?

The Paradigm Shift

Wireless Networks:

Protocol design & optimization
Performance Analysis

Traditional approach:

Point-to-point analysis
Fixed topology : Deterministic Graphs

Fixed Radius Connectivity Equal Average Channel Gain
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Motivation Why Stochastic Geometry?

Limitations

We have all learned to draw a graph to depict a communication network, as in Fig.1. This is
a useful and accurate depiction of the network topology when the nodes are interconnected
with dedicated wired lines. The tendency has been to do the same when the network under
consideration is a wireless one, and that has been the cause of many misconceptions and
much fallacious reasoning. If there are no “hard-wired” connections between the nodes, the
notion of a “link” between, say, nodes A and B is an entirely relative one. In fact, it is
so relative that links in a wireless network should be thought of as “soft” entities that are
almost entirely under the control of the network operator.

...

It should be clear, then, that the existence of a wireless link is a very volatile notion. Thus,

the proper way of depicting a wireless network is simply via the location of its node

-Ephermides
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Motivation Why Stochastic Geometry?

Spatial Stochastic Models

Point pattern based location modeling.
Infinite realizations of point process;
Impractical to design by considering infinite network topologies;
A statistical point pattern ≡ Spatial stochastic models.

Definition
Stochastic geometry is the branch of mathematics which deals with the
study of random point processes .
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Motivation Applications

Applications of Stochastic Geometry

General applications:

Astronomy
Sterelogy
Forestry
Material Sciences
Pattern extraction

Wireless Communication:

Interference Modeling
Cooperative transmission & sensing
Security
Microwave power transfer
Sensor networks, IoT, D2D and M2M
Vehicular networks
Energy harvesting
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Fundamentals of Point process theory

Point process

Arrival times: Ti+1 < Ti→Study inter-arrival Si = Ti+1−Ti ;1

Counting process Nt = ∑
∞
i=11{Ti ≤ t};

T T T T1 2 3 4

S S S1 2
3

N(t)

t

[ ]
a b

N(a,b]=2

Figure : Arrival times, inter-arrivals and counting process.

1In this tutorial, we follow the text by Baddeley 2007 (full reference at the end).
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Fundamentals of Point process theory

Point Process

B

N(B)=3

A

BB

V(A)=1

Figure : Count and vacancy
indicators

N(B) = # number of points in B ∈ R2.
V (A) = 1{N(A) = 0}.
N(B) is natural for exploring additive
properties

e.g. N(B) = Nred (B) +Nblack(B).

V (A) are natural for exploring geometric
and ’multiplicative’ properties

e.g. V (A) = Vred (A)Vblack(A).
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Fundamentals of Point process theory

Binomial Point Process
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Figure : Binomial Point Process
with n = 50 and
W = L×W = 40×40.

Fixed number of point n at random
location inside W ⊂ R2.
Point process Φ = {Xi} i = 1,2, ...,n
with Xi i.i.d. uniformly distributed in
W .

f (x) =

{
1/v2(W ) if x ∈W

0 otherwise.
(1)

v2(W ) =
∫
W dx = L×W

For a bounded set B ⊆W ⊂ R2, the
probability

p = P(Xi ∈ B) =
v2 (B∩W )

v2 (W )
. (2)
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Fundamentals of Point process theory

Binomial Point Process
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Figure : Binomial Point Process
with n = 50 and
W = L×W = 40×40.

N(B) = ∑
n
i=11{Xi ∈B}

P(Φ(B) = m) =

(
n
m

)
pm (1−p)n−m .

(3)

where p = P(Xi ∈B) = v2(B∩W )
v2(W ) and

N(B) follows binomial distribution.
V (B) = 1{N(B) = /0}= (1−p)n.
Let B = B1∪B2 and B1∩B2 = /0
then

N(B) = N(B1) +N(B2)

= N(B1∪B2)≤ n.
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Fundamentals of Point process theory

Distance Distribution for BPP

Let W = b(o,Rc) i.e., ball of radius Rc centered at origin, then

FRi
(r) = 1−P{Ri ≥ r} (4)

= 1−
i−1

∑
k=0

(
n
k

)
pk (1−p)n−k

= 1− I1−p (n− i +1, i) .

where p = r2/R2
c and Ix(a,b) =

∫ x
0 ta−1(1−t)b−1dt

B(a,b) is incomplete
regularized beta function.
B(a,b) = Γ(a)Γ(b)

Γ(a+b) is the beta function.

fRn (r) =
2
Rc

Γ(i + 1/2)Γ(n+1)

Γ(i)Γ(n+ 3/2)
(5)

×β

((
r

Rc

)2

; i +
1
2
,N− i +1

)
.
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Fundamentals of Point process theory

Distance Distribution for BPP

β (x ;a,b) =
xa−1 (1−x)b−1

B(a,b)
. (6)

Application to wireless network

why is the nth node forwarding important?
distance distribution to farthest and closest nodes
long hop vs short hop
energy efficiency tradeoffs

What is missing?
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Fundamentals of Point process theory

Random Measure and Random Set Formalism

N(A ) for all A ∈ R2 provides sufficient information to reconstruct
the positions in point pattern.
N({x}) > 0 forms point pattern; It is defined as N(A ) random
variable indexed by A .
N(A ∪B) = N(A ) +N(B) whenever A ∩B = /0 and N( /0) = 0.
An ⊇An+1is decreasing sequence of closed, bounded sets ∩nAn = A
then N(An)→ N(A ).
N(A ) is a random measure.
Locally finite: N(A ) < ∞ with probability 1
Simple:N({x})≤ 1 for all x ∈ Rd .
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Fundamentals of Point process theory

Stationary Point Process

Stationary Point Process
A point process is stationary if its distribution is invariant under translation.

For a stationary process, analyzing the performance of so called typical
node is sufficient for networkwide characterization.
Under stationarity the translated point process is identical to the
original process.
Binomial point process is not a stationary point process.
A stationary point process cannot be defined in finite bounded
compact subset of R2.

Isotropic
A point process is isotropic if its distribution does not change under the
rotation operation.

Motion invariant = isotropic + stationary
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Fundamentals of Point process theory

Poisson Point Process
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Figure : Poisson Point Process
with λ = 10−1 and
W = L×W = 40×40.

Most popular model of spatial node
locations

Rayleigh fading equvivalent for point
processes
Analytically tractable

Statistical independence of node
counts in disjoint subsets of R2.
Random number of nodes
Defined over whole plane
Limitations: Any Guesses?
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Fundamentals of Point process theory

Poisson Point Process

Poisson point process

The spatial Poisson point process, with uniform intensity λ > 0, is a point
process in R2 such that

[PP1] for every bounded closed set B, the count N(B) has a
Poisson distribution with mean λv2(B).

[PP2] if B1, ....,Bm are disjoint regions, then N(B1), ....,N(Bm)
are independent.

Generalizing the above process yields

P(Φ(B) = m) =
Λ(B)m

m!
exp(−Λ(B)) . (7)

with
Λ(B) =

∫
B

λ (x)dx . (8)
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Fundamentals of Point process theory

Conditional Property

Conditional Property

Consider a spatial Poisson point process, with uniform intensity λ > 0 in
R2 . Let W ⊂ R2 be any finite region with 0< v2(W ) < ∞. Given that
N(W ) = n, the conditional distribution of N(B) for B ⊂W is binomial:

P(N(B) = k |N(W ) = n) =

(
n
k

)
pk (1−p)n−k , (9)

where p = v2(B)/v2(W ) . Furthermore the conditional joint distribution of
N(B1), ....,N(Bm) for any B1, ....,Bm ⊂W is the same as the joint
distribution of these variable in binomial point process.
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Fundamentals of Point process theory

Distance Distribution of Poisson Point Process

Distance to the nth neighbour in Poisson point process

P(Rn < r) =
γ(n,λπr2)

Γ(n)
. (10)

Gamma distributed random variable.
The average distance to the nth neighbour can be found as

E(Rn) =
Γ(n+ 1

2)
√

πλ Γ(n)
.
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Fundamentals of Point process theory

Campbell’s Theorem

Sum of function over a PPP

Let Φ be a Poisson point process on R2 with intensity λ and let
f : R2→ R+ be a measurable function. Then the random sum

S = ∑
x∈Φ

f (x), (11)

is a random variable with

E

(
∑
x∈Φ

f (x)

)
= λ

∫
f (x)dx . (12)
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Fundamentals of Point process theory

Campbell’s Theorem

To prove the Campbell’s theorem, consider

f (x) = ∑
i

ci1{x ∈ Bi} (13)

then the expected value of summation can be computed as

E(S) = E

[
∑
x∈Φ

f (x)

]
, (14)

= E

[
∑
x∈Φ

∑
i

ci1{x ∈ Bi}

]
= E

[
∑
i

ciN(Bi )

]
= ∑

i

ciΛ(Bi ) = ∑
i

∫
Bi

ciλ (dx)

=
∫
B
f (x)λdx .
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Fundamentals of Point process theory

Probability Generating Functional

Product of function over a PPP

Let Φ be a Poisson point process on R2 with intensity λ and let
f : R2→ [0,1] be a real valued function. Then

E

(
∏
x∈Φ

f (x)

)
= exp

(
−λ

∫
R2

(1− f (x))dx

)
. (15)
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Applications in Wireless Communications Aggregate Interference Modeling
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Applications in Wireless Communications Aggregate Interference Modeling

Mean & Variance of Aggregate Interference

Consider a receiver located at the origin o associated with a
transmitter at a fixed distance say ro . The aggregate interference
experienced by the receiver is given as

I = ∑
i∈Φ

hi l(ri ) (16)

where h is unit mean exponential random variable corresponding to
Rayleigh fading and l(r) is the path-loss attenuation function.
The average aggregate interference can be computed by employing the
Campbell’s theorem as

E(I ) = E(h)λ

∫ 2π

0

∫
l(r)rdrdθ . (17)

= λ2π

∫
∞

0
rl(r)dr .

The variance can be computed along the same lines.
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Applications in Wireless Communications Aggregate Interference Modeling

Link Outage Probability

Relationship between LI (s) and Link Success
The link success probability for a certain desired SIR thresholdγth can be
expressed as

Psuc = Pr
{

PHl(ro)

∑i∈Πs
Hi l(Ri )P

≥ γth

}
= EI(exp(−γthr

α
o I )) (18)

= LI (s)|s=γthrα
o
.

LI (s) = E

(
exp

(
−s ∑

i∈Φ

hi l(ri )

))
(19)

= Ei

(
∏
i∈Φ

EH [exp(−shi l(ri ))]

)

= exp
(∫

(1−EH [exp(−shl(r))])λ (dr)

)
.
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Applications in Wireless Communications Cooperative Spectrum Sensing
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Applications in Wireless Communications Cooperative Spectrum Sensing

Stochastic Geometry for spectrum sensing

Exploiting stochastic geometry through two important theorems:
1 Campbell ’s theorem
2 Probability generating function

The detection performance at fusion center has been derived analytically
(using 1) and the power needed to transmit the measurements to the
fusion center has been evaluated theoretically (pgfl)
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Applications in Wireless Communications Cooperative Spectrum Sensing

Cooperative spectrum sensing

1 In practice, several problems militate against effective and efficient
spectrum sensing. These include the hidden primary user problem
(e.g., inside a large building, etc.), so a local spectrum sensing is not
enough.

2 As a result the secondary user cannot detect the primary user and
when it accesses this frequency band it will cause interference to the
primary user.

3 Because of this, cooperative spectrum sensing has emerged to
respond to these challenges.
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Applications in Wireless Communications Cooperative Spectrum Sensing

Challenging in cooperative spectrum sensing

In cooperative spectrum sensing, each secondary user reports its
measurement to the fusion center. The reported measurement
consumes power and this power consumption might be significant if
the number of secondary users is large.
Thus overhead energy needs to be considered in cooperative spectrum
sensing design.
The conventional cooperative spectrum sensing is based on
censoring the test statistic (local thresold ). Here, we use maximum
combining at fusion center so we call it censored selection combining
(CSC).
To save additional power we propose another parameter which is a
transmit power threshold along with the local threshold. Thus we call
it censored selection combining detector based power censoring
(CSCPC).
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Applications in Wireless Communications Cooperative Spectrum Sensing

System Model
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Figure : System model

Test statistic selection Tmax = maxx∈ΦTx

Exploit product form and PGFL.
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Applications in Wireless Communications Cooperative Spectrum Sensing

Average Power Consumption
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Figure : The average total power E[4(ξ ,pt)] versus the local threshold (ξ )
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Applications in Wireless Communications Cooperative Spectrum Sensing

Detection Performance
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Figure : The probability of detection (PD) versus the probability of false alarm
(PFA) no power constraint (CSC) and for power constraint (CSCPC).
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Applications in Wireless Communications Femtocell modelling with PPP
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Applications in Wireless Communications Femtocell modelling with PPP

Two tier network modelling with PPP

Macro and femtocell positioning as two independent Poisson Point
Process Φm and Φf with intensities λm and λf respectively.
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Figure : Two tier network consisting of femtocells (red crosses) and
macrocells (blue dots)

Femtocells are assumed to have a designated user each, considered to
be located indoors
Macrocell users (considered to be located outdoors) are assumed to be
served by closest macrocell
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Applications in Wireless Communications Femtocell modelling with PPP

System performance metrics

Signal to Interference Ratio (SIR), for interference limited scenarios

SIRi =
Ptx
i |h0|2r

−α0
0 |s0|2

∑
j∈Φi

Ptx
i |hj |

2
r
−αj
j |sj |

2

where Ptx
i is the transmit power of a base station in tier i , h0and hi are the

channel gains (Rayleigh) from serving and interferer base station to desired
user, r0and rj are the distances from user to serving and interfering base
station, and s0 and sj are the transmitted symbols from serving and
interfering base station to the desired user, with i ∈ {f ,m}

Coverage probability: Probability that the SIR is above a prescribed
threshold βi

Pc
i (βi ) = P(SIRi > βi )

Throughput: Achievable data rates in the system in bps/Hz

Ti = Pc
i (βi ) log2 (1+ βi )
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Applications in Wireless Communications Femtocell modelling with PPP

System performance metrics

Using stochastic geometry concepts, such as Cambpbell’s theorem or
generating functional, we can find
Coverage probability

Pc
f (βf ) = exp

(
−λf

(
Rα0
f wβf

) 2
αf

π2 2
αf

sin
(

π
2

αf

)
)

Pc
m (βm) =

(
1+ 2βm

NS (αm−2) 2F1
(
1,1− 2

αm
;2− 2

αm
;−βm

))−1
where Rf is the femtocell radius, w is the wall partition loss, α0 is the path
loss exponent in the femtocell tier desired link, αi (i ∈ {f ,m}) is the path
loss exponent of interferers in the i -th tier, 2F1 (a,b;c ;d) is the Gauss
hypergeometric function and NS is the number of sectors in which macro
BS are divided.
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Applications in Wireless Communications Femtocell modelling with PPP

System performance metrics

Throughput: Considering the case of adaptive modulation systems
with L constellations available, and integer data rates (k = 1,2, ..,L
bps/Hz) the throughput can be expressed as

Tf =
L

∑
k=1

Pc
f (βk) =

L

∑
k=1

exp

(
−λf

(
Rα0
f wβk

) 2
αf

π2 2
αf

sin
(

π
2

αf

)
)

Tm =
L

∑
k=1

(
1+ 2βm

NS (αm−2) 2F1
(
1,1− 2

αm
;2− 2

αm
;−βk

))
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Summary

Summary

Spatial point process are essential ingrident of next generation
performance evaluation receipe.
Stochastic geometry provides a formal framework to model the
dynamics and capture the interaction in evolving networks.
Like all other models, stochastic geometric models have certain
limitations. However, these can be avoided by intelligently modeling
the desired networking scenario.
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