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About this Book 
This book is the result of work carried out by the teaching staff of Savoie Mont Blanc University in 
the following postgraduate master's degrees: 

■ Electronics and embedded systems 
■ Telecommunication and computer networks 

All remarks, modifications, improvements or corrections can be proposed on our website contact 
page: www.univ-smb.fr/lorawan/en/contact/ 

This book quotes many commercial brands (end-devices, LoRaWAN servers, IoT platforms…). Even 
though the university has partners, none of these brands has financed this book and it is with total 
objectivity that all these chapters have been written. 

This book on the Internet of Things and the LoRa / LoRaWAN standard is updated regularly. On our 
website www.univ-smb.fr/lorawan you can subscribe to receive an email notification when new 
information is released. You will also find a set of tools, information and resources on LoRaWAN that 
you are free to use. 
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LoRa® and LoRaWAN® course on video 
While this book captures the entirety of the course content, you can also enroll in the LoRa and 
LoRaWAN for the Internet of Things video course on UDEMY for a more interactive experience. 

 

This course is composed of many videos that are approximately four minutes long each. They include 
additional information and details on the configuration of end-devices and gateways. Additionally, 
when taking the online course, you can ask your questions on the platform, instructors are there to 
answer. 

One hour of these LoRaWAN videos is available for free. 

You can request a free voucher for educational purposes only. 

These videos are only available in English and French. 
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LoRaWAN® training session with hands-on (online) 
A two-day training course that is 100% online. Instructors are available both in French and in 
English (on demand). 

 Equipment provided: We send you a LoRaWAN end-device and a gateway to build your own 
LoRaWAN® network. You keep all the material at the end of the training. 

 Limited number of participants: To personalize the content as much as possible, in order to 
best meet your needs, each course is limited to a maximum of 10 participants. 

 Personalized follow-up: We are at your disposal throughout the training and we remain 
available to answer all your questions, even after the course is complete. 

Before the training 

■ You will have access to the e-Learning educational platform. 
■ You will receive the teaching kit and have access to servers. 

 

During the training 

■ Set up of a LoRa® transmission. 
■ Test of the transmission parameters (Bandwidth, channels, Spreading Factor). 
■ Configure your gateway and your LoRaWAN server. Register your device with your 

LoRaWAN Network Server. 
■ Test Activation by Personalization (ABP) and Over-the-Air Activation (OTAA) modes. 
■ Test of class A end-devices, uplink, downlink, confirmed, unconfirmed. 
■ Implement the Adaptive Data Rate (ADR) functionality. 
■ Export data with HTTP and MQTT protocols. 
■ Create your own LoRaWAN Network Server (The Things Stack v3 and ChirpStack). 
■ Create your own IoT platform.  
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Abbreviations and Acronyms 
ABP   Activation By Personalization 
ADR  Adaptive Data Rate 
AS  Application Server 
AppEUI  Application Extended Unique Identifier 
AppKey  Application Key 
AppSKey Application Session Key 
BW  Bandwidth 
CDMA   Code Division Multiple Access 
CHIRP  Compressed High Intensity Radar Pulse 
CID  Command IDentifier (MAC Command) 
CR   Coding Rate 
CRC   Check Redundancy Cycle 
DevAddr  Device Address 
DevEUI   Device Extended Unique Identifier 
FDM   Frequency Division Multiplexing 
FFT  Fast Fourier Transform 
HTTP  HyperText Transfer Protocol 
HSM  Hardware Security Module 
IoT  Internet of Things 
JSON   JavaScript Object Notation 
JoinEUI  Join Extended Unique Identifier 
JS  Join Server 
LoRa   Long Range Device to Cloud platform from Semtech 
LoRaWAN  Long Range Wide Area Network 
LPWAN  Low Power Wide Area Network. 
LTE-M   Long Term Evolution Cat M1 
MIC  Message Integrity Control 
MQTT   Message Queuing Telemetry Transport 
NB-IoT   NarrowBand Internet of Things 
NS  Network Server 
NwkSKey  Network Session Key 
OTAA  Over The Air Activation 
QoS   Quality of Service 
RSSI   Received Signal Strength Indication 
SDR    Software Digital Radio 
SE  Secure Element 
SF   Spreading Factor 
SNR    Signal over Noise Ratio 
TDM   Time Division Multiplexing 
TOA   Time One Air 
TTI  The Things Industries 
TTN   The Things Network 
TTS  The Things Stack  
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1 Embedded systems and the IoT 
The term IoT (Internet of Things) is recent but refers to an old usage called Machine-to-Machine. 
Machine-to-Machine (M2M) is a set of wired or wireless network technologies that allow the 
automatic exchange of information between systems without human intervention. The IoT is simply 
a wider vision of M2M, where the devices don't only come from the industrial world, but also from 
common public usage. 

The IoT market continues to grow significantly around the world. This rapid evolution encourages 
new players to propose new technologies at each stage: the development of hardware devices, 
connectivity coverage, and cloud services (i.e., data storage of visualization platforms). 

The IoT is often presented as the new industrial revolution, and marketing often promises that all 
use cases are "smart": smart building, smart city, smart healthcare, etc. However, making things 
“smart” is not always easy and many protocols exist. In this book, we will help you understand one 
of the main protocols in the IoT world: LoRaWAN. 

1.1 The Internet of Things (IoT) 
1.1.1 Embedded systems in the IoT 

Generally speaking, electronic systems can be characterized by their power consumption, 
computing power, size, and price. In the specific case of embedded systems used in IoT, we can 
assign the following weight to each of the characteristics: 

 

Figure 1: IoT device characteristics 

While there are certainly exceptions to this simple definition, we assume that, compared to other 
electronic systems, embedded systems used in IoT have: 

■ Low-power consumption 
■ Low computing power 
■ A small size 
■ A low price 

https://www.univ-smb.fr/lorawan/en/
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The second feature of an IoT device is its ability to communicate data over a wireless network. Many 
protocols exist, and device designers have a considerable variety of choices, depending on the 
range, bandwidth, and the level of power consumption required. 

1.1.2 The IoT wireless protocols 
In the IoT world, we can find many protocols such as Bluetooth, Zigbee, Wi-Fi, 2G, 3G, 4G, 5G, NFC, 
and more. We usually classify them according to their bandwidth and range as we can see in Figure 
2. As a designer, we are always happy to reach greater range and bandwidth. If you have a quick 
glance at the figure, we may think that protocols in the top right area are much better than all the 
others (better range and better bandwidth). Protocols on the bottom left should therefore be the 
worst. What we are missing here, is that this graphic does not represent the power consumption 
induced by the protocol. Indeed, NFC is a really low-power protocol: It even runs without any energy 
storage. 

 

Figure 2: Protocols used in IoT 

On the bottom right are the low-bandwidth, long-range protocols that have very low power 
requirements. These include NB-IoT and LTE-M. Sigfox and LoRaWAN are considered extremely long 
range and extremely low-power protocols. These types of networks are all referred to as Low Power 
Wide Area Network (LPWANs). 

In this course, we focus on LoRaWAN (Long Range Wide Area Network) which is a long range 
standard that uses a low data-rate with low power consumption needs.  

1.1.3 Frequency bands 
In Europe, some frequency bands are free to use. This means: 

■ there is no need to ask for authorization. 
■ they are free of charge. 

Table 1 shows some of these free bands in Europe. 

Range 

Bandwidth 

WiFi 

Bluetooth 

Zigbee 

LoRa / Sigfox 
NB-IoT/LTE-M  

  

2G 

3G 

4G 

5G 

NFC 

https://www.univ-smb.fr/lorawan/en/
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Band Examples of protocols 
13.56 MHz RFID, NFC 
433 MHz Walkie-talkie, remote control, LoRa 
868 MHz Sigfox, LoRa 
2.4 GHz Wi-Fi, Bluetooth, Zigbee, LoRa 
5 GHz Wi-Fi 

Table 1: Free frequency bands 

In Europe, LoRa can use the 433 MHz, 868 MHz, or 2.4GHz bands but only the 868 MHz band is used 
for LoRaWAN. 

1.2 Media sharing modes 
Regardless of the protocol used, the medium for transferring information is the air (all IoT protocols 
are wireless). The medium must be shared between all transmitters in such a way that wireless end-
devices do not interfere with one another. For this purpose, we allocate frequency bands to each 
use case. For example, the FM (Frequency Modulation) radio frequency band in Europe goes from 
87.5 MHz to 108 MHz. 

Within their frequency bands, the end-devices can share the medium in different ways. 

1.2.1 FDM (Frequency Division Multiplexing)  
Devices use frequency channels to separate their transmissions. LoRa uses this sharing mode, i.e., 
the free 868 MHz band is split into several channels that can be used to transmit information. 

 

Figure 3: FDMA usage in LoRa 

1.2.2 TDM (Time Division Multiplexing) 
In this transmission mode, end-devices transmit intermittently in order to leave the channel free for 
the others. LoRa uses this sharing mode, i.e., LoRa doesn't allow devices to transmit continuously. 
However, because the end-devices are not synchronized, collisions can occur. 

1.2.3 Spread Spectrum 
In this transmission mode, end-devices transmit at the same time, on the same channel, but with a 
specific signal structure (with codes or symbols) which lets the receiver retrieve the buried signal 
over the noise. LoRa uses this sharing mode. 

1 channel 

Frequency  
in MHz 

867.1 867.3 867.5 867.7 

868 MHz band 

… 

https://www.univ-smb.fr/lorawan/en/
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Figure 4: Using Spread Spectrum in LoRa 

LoRa-enabled end-devices can choose from several channels to transmit data. The beauty of LoRa 
is that even if many end-devices use the same channel, they will all be able to transmit at the same 
time.  

Most famous Spread Spectrum modulation methods use "codes" to achieve this performance. LoRa 
uses symbols instead (called Chirp), hence its name: Chirp Spread Spectrum (CSS) modulation. 

In order to understand the relevance of this media-sharing method, we will validate the concept 
with code Spread Spectrum in the next section. In chapter 3, we will explain Chirp Spread Spectrum 
LoRa modulation in detail. 

1.3 Spreading spectrum with codes  
Review the following example to see how it is possible for three end-devices to transmit at the same 
time on the same channel. We will focus on the validity of the transaction. 

The method consists of using codes that have mathematical properties adapted to our objective: 
transmitting at the same time on the same channel. The matrix below gives four spreading codes 
(one per line). 

Orthogonal Code User 0 1 1 1 1 
Orthogonal Code User 1 1 -1 1 -1 
Orthogonal Code User 2 1 1 -1 -1 
Orthogonal Code User 3 1 -1 -1 1 

Table 2: Hadamart (mathematician) matrix of order 4 

The property of these codes (1 1 1 1 ; 1 -1 1 -1 ; 1 1 -1 -1 ; 1 -1 -1 1) is called "orthogonal". We don't 
explain this here but we must keep in mind that it only works if this orthogonal property is respected. 

1.3.1 Validation of a single transmission over the air 
Each table below represents a transmission, which is independent of the others: we don't care yet 
if they occur at the same time. We just check that each transmission reaches its destination.  

Each user has its own orthogonal code from the matrix. Two users cannot have the same code. We 
often call them "Spreading Code". The method is as follows: 

During transmission: 

■ Each bit of the message is multiplied by its "Spreading Code": (1) x (2) 
■ The result of the multiplication is transmitted: (3) 

During reception: 

1 channel 

Frequency in MHz 867.1 867.3 867.5 867.7 

868 MHz band 

Dev 1 
Dev 2 
Dev 3 
Dev 4 

Dev 6 
Dev 7 

Dev 8 
Dev 9 

Dev 10 

Dev = Device 

https://www.univ-smb.fr/lorawan/en/
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■ Each symbol received (4) is multiplied by the same "Spreading Code" (2). 
■ The received message (6) is equal to the sum of the decoded symbols (5), divided by the 

number of symbols (here we have four symbols). 

Each table below represents one user. 

1 User 1 message (bits) 1 0 1 0 
2 User 1 "Spreading Code"  1 -1  1 -1 1 -1  1 -1 1 -1  1 -1 1 -1  1 -1 
3 Transmitted symbols = (1) x (2) 1 -1  1 -1 0  0  0  0 1 -1  1 -1 0  0  0  0 

... transmission ... 
4 Received symbols 1 -1  1 -1 0  0  0  0 1 -1  1 -1 0  0  0  0 
5 Decoded symbols = (4) x (2) 1  1  1  1 0  0  0  0 1  1  1  1 0  0  0  0 
6 Message received = ∑ (5) / nbr_Symb 1 0 1 0 

Table 3: User 1 transmission 

We can check that the message received (6) is the same one as the user’s 1 initial message (1). 

 

The last columns of the following tables (User 2 and User 3) are left blank so that you can try the 
calculation by yourself.  

1’ User 2 message (bits) 0 1 0 1 
2’ User 2 "Spreading Code" 1  1 -1 -1 1  1 -1 -1 1  1 -1 -1 1  1 -1 -1 
3’ Transmitted symbols = (1') x (2') 0  0  0  0 1  1 -1 -1   

... transmission ... 
4’ Received symbols 0  0  0  0 1  1 -1 -1   
5’ Decoded symbols = (4') x (2') 0  0  0  0 1  1  1  1   
6’ Message received = ∑ (5') / nbr_Symb 0 1   

Table 4: User 2 transmission 

1’’ User 3 message (bits) 1 1 0 0 
2’’ User 3 "Spreading Code" 1 -1 -1  1 1 -1 -1  1 1 -1 -1  1 1 -1 -1  1 
3’’ Transmitted symbols = (1'') x (2'') 1 -1 -1  1 1 -1 -1  1   

... transmission ... 
4’’ Received symbols 1 -1 -1  1 1 -1 -1  1   
5’’ Decoded symbols = (4'') x (2'') 1  1  1  1 1  1  1  1   
6’’ Message received = ∑ (5'') / nbr_Symb 1 1   

Table 5: User 3 transmission 

1.3.2 Simultaneous transmissions 
Transmissions now take place simultaneously: User 1, User 2 and User 3 messages are sent at the 
same time on the same channel. The first column of User 1 is already filled in as an example. The 
method is as follows: 

On the receiver's antennas: 

■ The signal received is the addition of all symbols transmitted by all users (1, 2, 3). We thus 
add the following lines: 

3 Transmitted symbols user 1 1 -1  1 -1 0  0  0  0 1 -1  1 -1 0  0  0  0 
3' Transmitted symbols user 2 0  0  0  0 1  1 -1 -1   
3'' Transmitted symbols user 3 1 -1 -1  1 1 -1 -1  1   
3''' ∑ of the transmitted symbols ( 3 + 3' + 3'' ) 2 -2 0 0 2  0 -2 0   

Table 6: Simultaneous transmission of user 1, user 2 and user 3. 

https://www.univ-smb.fr/lorawan/en/
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Then, on each receiver: 

■ Each signal received (3''') is multiplied by the user's "Spreading code" (2, 2' or 2''). 
■ The message (6, 6', 6'') is equal to the sum of the decoded symbols (7, 7', 7''), divided by the 

number of symbols (here we have four symbols). The message is equivalent to the one sent 
(1, 1', 1''). 

3''' Received symbols ( 3 + 3' + 3'' ) 2 -2 0 0 2  0 -2 0   
  

2 User 1 "Spreading Code"  1 -1  1 -1 1 -1  1 -1 1 -1  1 -1 1 -1  1 -1 
7 Decoded symbols (3''') x (2) 2  2  0  0 2 0 -2 0   
6 Message received User 1 = ∑ (7)/ nbr_Symb 1 0   
  

2' User 2 "Spreading Code" 1  1 -1 -1 1  1 -1 -1 1  1 -1 -1 1  1 -1 -1 
7' Decoded symbols (3''') x (2') 2  -2  0  0 2  0  2  0   
6' Received message User 2 = ∑ (7')/ nbr_Symb 0 1   
  

2'' User 3 "Spreading Code" 1 -1 -1  1 1 -1 -1  1 1 -1 -1  1 1 -1 -1  1 
7'' Decoded symbols (3''') x (2'') 2  2 0  0 2  0  2  0   
6'' Message received User 3 = ∑ (7'')/ nbr_Symb 1 1   

Table 7: Reception of User 1, User 2 and User 3 messages 

We can check that the messages received (6, 6', 6'') are the same as the ones transmitted (1, 1', 1''). 

1.3.3 The LoRa® modulation 
LoRa uses a Spread Spectrum method that is different from the one studied above. However, the 
purpose is the same: being able to transmit at the same time, on the same channel. The SX1261 
LoRa transceiver can use eight "spreading codes" called "Spreading Factor" [SF5, SF6, SF7, SF8, SF9, 
SF10, SF11 and SF12]. We can therefore have eight simultaneous transmissions on the same 
channel. The real SF (Spreading Factor) parameters will be explained in detail in chapter 3. In the 
LoRaWAN standard, we use only six SF [SF7 to SF12]. 

  

https://www.univ-smb.fr/lorawan/en/
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2 Radio transmission and propagation  

2.1 Units and definitions  
2.1.1 The decibel (dB) 

When a signal spreads along its communication path, the ratio between the power received and the 
power transmitted can differ greatly. While the ratio is nearly 1 when we use a cable, it can be much 
higher when we use an amplifier, or extremely low in the case of air loss transmission (billionth of a 
billionth). Dealing with such big and small numbers is not suitable for quickly characterizing a 
transmission gain or attenuation. Furthermore, multiplying the gain of each transmission block is 
not convenient. 

 

Figure 5: The power transmission between a transmitter and a receiver 

dB is a ratio between two powers: the power on the receiver PR and the power on the transmitter 
PT. The formula for the ratio in dB is: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃 (𝑑𝑑𝑑𝑑) = 10. 𝑙𝑙𝑃𝑃𝑙𝑙10 �
𝑃𝑃𝑅𝑅
𝑃𝑃𝑇𝑇
� 

If the result is a negative number (-), this is an attenuation. If the result is a positive number (+), this 
is a gain (+). 

If you want to know the power ratio in dB, you can use the following formula: 

𝑃𝑃𝑅𝑅
𝑃𝑃𝑇𝑇

= 10
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑟𝑟𝑟𝑟𝑟𝑟𝑃𝑃 (𝑑𝑑𝑑𝑑)

10  

With these two formulas, you can easily verify the values in Table 8 below. 

Power ratio in dB Power ratio 
+ 10 dB Multiplication by 10 
+ 3 dB Multiplication by about 2 
0 dB Equality 
-3 dB Division by about 2 

- 10 dB Division by 10 
Table 8: Power ratio calculation 

The beauty of using dB is that not only do we now deal with reasonably large numbers, but we also 
use only the + and – operation for the overall calculation. 

Exercise: 

In Figure 5, the cable that transmits the signal has a gain of -6dB. What is the power ratio between 
PR and PT? 

Transmitter Receiver 

Air, cable, amplifier… 
P

T
: Power Transmitted  P

R
: Power Received 

https://www.univ-smb.fr/lorawan/en/
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Answer:  

𝑃𝑃𝑅𝑅
𝑃𝑃𝑇𝑇

= 10
−6
10 = 0.25 

■ -6 dB is negative, this is an attenuation. 
■ 0.25 < 1, this is an attenuation. 

 

2.1.2 Power in dBm 
The dBm is the power in comparison to 1 mW: 0 dBm corresponds to 1 mW. Using the same ratios 
as we did in Table 8 for dB, we can fill out Table 9 for dBm. 

Power in dBm Power in mW 
10 dBm 10 mW 
+ 3 dBm 2 mW 
0 dBm 1 mW 

- 3 dBm 0.5 mW 
- 10 dBm 0.1 mW 
Table 9: Comparison of power in dB and mW 

Exercise: A walkie-talkie has a transmission power of 2 W. Using Table 9, find the transmission power 
in dBm. 

Answer: 

 1 mW   x  10  x  10  x  10   x  2 =  2 W 

 0 dBm  +  10  +  10  +  10  +  3 = 33 dBm 

The walkie-talkie has a transmission power of 33 dBm. 

The formulas for power in dBm and power in Watt are: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑑𝑑𝑑𝑑𝑑𝑑) = 10. 𝑙𝑙𝑃𝑃𝑙𝑙10 �
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟)

0,001
� 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑊𝑊𝑟𝑟𝑟𝑟𝑟𝑟) = 0.001 𝑥𝑥 10
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 (𝑑𝑑𝑑𝑑𝑑𝑑)

10  

 

2.1.3 RSSI, sensitivity, SNR, link budget 
A transmitter transmits a signal with a power PT. The receiver recovers a fraction of this power (PR), 
as well as some noise (PN). 
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Figure 6: A radio frequency transmission 

■ The Received Signal Strength Indication (RSSI) is the power received: PR. 
■ The Sensitivity is the minimum PR power (or minimum RSSI) that must be present at the 

receiver in order to retrieve the signal. If the received RSSI is below the sensitivity level, the 
signal is undetectable. 

■ SNR (Signal over Noise Ratio) is the ratio of the received power (PR) to the noise power (PN). 

All these values (RSSI, Sensitivity, SNR, ...) are given in decibel. A signal can be properly received if 
the two following conditions are met: 

1 .  The RSSI is greater than the sensitivity level of the receiver. 
2 .  The SNR does not fall below a certain threshold that would make the signal impossible to 

detect on the receiver's side. 

Exercise: A transmitter provides 13 dBm using an antenna with a gain of 2 dB. The air loss is 60 dB. 
The receiving antenna has a gain of 2 dB and is connected to a receiver with a sensitivity level of -80 
dBm. Will the signal be received? 

Answer: 
13  +  2  –  60  +  2  =  - 43  The received power is -43 dBm 
- 43 dB  is over – 80 dB  (sensitivity) Yes, the signal can be received  
 

The logs below come from a LoRaWAN gateway. They give an example of RSSI and SNR values 
measured during a data transmission. The values "rssi": -13 and "snr": 9.5 show that in this example 
the received signal has high power and has a very good SNR. Indeed, the LoRaWAN device was 
positioned only a few meters away from the gateway during this test. 

"gateways": 
    { 
      "time": "2020-04-29T12:09:45.563621044Z", 
      "channel": 0, 
      "rssi": -13, 
      "snr": 9.5 
    } 

What can we do if the received power (PR) is below the sensitivity level? The first idea would be to 
increase PT. This is possible to a certain extent as the transmission power is limited by the 
specification. The maximum power PT on the 868 MHz band is 14 dBm (25 mW). The second 
possibility is to improve the sensitivity of the receiver. That is obviously what LoRa module designers 
are working at. In the end, it is the difference between the transmitted power PT and the sensitivity 

Transmitter Receiver 
Air 

Noise PT: Power Transmitted  

PR: Power Received 
+  
PN: Noise Power  
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of the receiver that matters. This is called the link budget. In the previous exercise, the link budget 
available is 93 dB (13 + 80). 

 In LoRa, we have a link budget of about 157 dB.  
 In LTE (4G) we have a link budget of about 130 dB.  

Once you have spent the link budget along the transmission path, the signal is lost. 

2.2 Transmission distance in LoRa  
The transmitted power (PT) is attenuated in the air according to the following simplified formula: 

𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿 = 10. 𝑙𝑙𝑃𝑃𝑙𝑙10(𝐷𝐷𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑃𝑃2.𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝑃𝑃𝐷𝐷𝐷𝐷𝐹𝐹2. 1755) 

■ Loss: in dB 
■ Distance: in km 
■ Frequency: in MHz 

We can therefore estimate the maximum distance: 

𝐷𝐷𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑃𝑃 =  �
10

𝐿𝐿𝑃𝑃𝐿𝐿𝐿𝐿
10 )

1755.𝐹𝐹𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝑃𝑃𝐷𝐷𝐷𝐷𝐹𝐹2
 

Since the link budget indicates the maximum loss that a transmission can withstand, we assume that 
the budget is spent in the air loss: 

𝑑𝑑𝑟𝑟𝐿𝐿𝑟𝑟𝑟𝑟𝐷𝐷𝐷𝐷𝑃𝑃 =  �
10

𝐿𝐿𝑟𝑟𝐿𝐿𝐿𝐿 𝑑𝑑𝐵𝐵𝑑𝑑𝐵𝐵𝑃𝑃𝑟𝑟
10 )

1755.𝑓𝑓𝑃𝑃𝑃𝑃𝐹𝐹𝐹𝐹𝑃𝑃𝐷𝐷𝐷𝐷𝐹𝐹2
 

 

■ The LoRa SX1272 transceiver (link budget of 157 dB) gives a theoretical distance of 1946 km. 
■ The LoRa SX1262 transceiver (link budget of 170 dB) gives a theoretical distance of 8696 km. 

 

In April 2020, the world record for a LoRa transmission was broken. Thomas Telkamp with his team 
reached 832 km in the EU868 band using a power of 25 mW / 14 dBm (maximum power allowed). 

2.3 Transceiver documentation  
Figure 6 is an extract of SX1262 transceiver documentation.  
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Figure 7: Main features of the SX1262 LoRa Transceiver 

Using the link budget definition (PT minus receiver sensitivity), we find the 170 dB stated in this 
documentation (22 dBm + 148 dBm). Nevertheless, we repeat that the maximum transmit power in 
Europe is 14 dBm which reduces the link budget to 162 dB (14 dBm + 148 dBm). 

In LoRa, the larger the Spreading Factor, the better we are able to transmit in a noisy environment. 
Table 10 shows the signal-to-noise ratios with which we will be able to carry out a transmission, 
depending on the Spreading Factor. 

Table 10: Influence of the Spreading Factor on the SNR 

We notice that with an SF8 transmission, we are able to demodulate the signal with an SNR of -10 
dB: we will be able to receive a signal with noise 10 times higher than the signal. 

We notice that for an SF12 transmission, we are able to demodulate the signal with an SNR of -20 
dB: we will be able to receive a signal with noise 100 times higher than the signal. 

However, we also notice that when using a higher Spreading Factor, the number of transmitted 
"chips" increases (2nd column of the table). Later on, we will see what this means exactly, but we can 
already say that it will obviously affect the transmission time, hence the bit rate.  
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3 LoRa® modulation (physical layer)  

3.1 LoRa® modulation  
As we explained earlier, LoRa modulation uses Spread Spectrum to transmit its data. However, 
instead of using "codes", it will use "Chirps" and that is why it is called Chirp Spread Spectrum 
modulation. The purpose always remains the same: to have several transmissions at the same time 
in the same channel. The consequence on the spectrum also always remains the same: it causes a 
spread of the spectrum on the selected bandwidth. 

3.1.1 The Chirp 
The signal emitted by the LoRa modulation is a symbol with a basic form presented in Figure 8. Its 
name "Chirp" comes from the fact that this symbol is used in radar technology (Chirp: Compressed 
High Intensity Radar Pulse). 

Figure 8: A Chirp (Matlab simulation) 

The start frequency is the channel frequency minus the bandwidth divided by two. The final 
frequency is the channel frequency plus the bandwidth divided by two. Figure 9 represents the LoRa 
modulation in the frequency domain.  

■ The channel (𝐹𝐹𝑐𝑐ℎ𝑟𝑟𝐿𝐿𝐿𝐿𝑃𝑃𝑎𝑎) is the center frequency. 
■ The band occupied around 𝐹𝐹𝑐𝑐ℎ𝑟𝑟𝐿𝐿𝐿𝐿𝑃𝑃𝑎𝑎 is the bandwidth. 

 

Figure 9: Spectrum of a LoRa transmission 
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Exercise: A LoRa transmission uses the 868,1 MHz channel with a bandwidth of 125 kHz. Can you 
give the start and end frequency of the Chirp? 

Answer: 

■ Start frequency:  868 037 500 Hz = 868 100 000 – 125 000/2 
■ End frequency:   868 162 500 Hz = 868 100 000 + 125 000/2 

In order to make the representation easier to understand, we use a Time-Frequency graph 
(Spectrogram). 

 

Figure 10: Spectrogram of a LoRa transmission 

In LoRa, each symbol represents a number of bits transmitted. The rule is as follows: 

Number of bits transmitted in a symbol = Spreading Factor 

For example, if the transmission uses SF10, then one symbol (Chirp) represents 10 bits. 

During emission, the bits are grouped together in packets of SF bits. Each packet is represented by 
a particular symbol among 2𝑆𝑆𝑆𝑆possible forms. Between symbols, the only difference is that they all 
start from a specific frequency which represents the packet of bits. 

Figure 11 shows a theoretical example of SF2 modulation at 868,1 MHz, with a bandwidth of 125 
kHz. Each symbol represents 2 bits.  

Frequency 

Time 

868 100 000 Hz 

868 162 500 Hz 

One symbol (Chirp) One symbol (Chirp) 

868 037 500 Hz 
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Figure 11: Symbols transmitted in LoRa modulation in SF2 (theoretical case) 

Example:  

■ We consider the following binary sequence: 0 1 0 1 1 1 0 0 0 1 1 0 0 1 0 0 1 1 0 1 
■ We use SF10 

We group the bits in packets of 10. Each packet of 10 bits is represented by a particular symbol. 
There are 1024 different symbols to encode the 1024 possible binary combinations (210). 

 

Figure 12: LoRa Chirp transmission 

Figure 13 is the spectrogram of a LoRa transmission realised thanks to an ADALM Pluto receiver. 

 

Figure 13: Spectrogram of a LoRa transmission 
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3.1.2 Symbol transmission time  
In LoRa, the transmission time of each symbol (Tsymbol) depends on the Spreading Factor. The higher 
the SF, the longer the transmission time. For the same bandwidth, the transmission time of a symbol 
in SF8 is twice as long as the transmission time of a symbol in SF7. This is the case for up to SF12. 

 

Figure 14: Symbol transmission time 

The transmission time of each symbol (Tsymbol) also depends on the bandwidth used. Tsymbol is 
inversely proportional to the bandwidth. If we take into account the SF and the bandwidth, we 
obtain the following expression: 

𝑇𝑇𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 =
2𝑆𝑆𝑆𝑆

𝑑𝑑𝑟𝑟𝐷𝐷𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ
 

As an example, Table 11 shows the transmission time depending on SF, for a bandwidth of 125 KHz. 

Spreading Factor Symbol transmission time 
SF7 1.024 ms 
SF8 2.048 ms 
SF9 4.096 ms 

SF10 8.192 ms 
SF11 16.384 ms 
SF12 32.768 ms 

Table 11: Symbol transmission time for BW125 

The symbol rate is  1
𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

= 𝐹𝐹𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 = 𝑑𝑑𝑟𝑟𝐿𝐿𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ
2𝑆𝑆𝑆𝑆

 . Obviously, the higher the bandwidth, the higher 

the symbol rate. 

3.1.3 Time on Air 
The Time on Air is the overall duration of a LoRa frame. It depends on the number of symbols present 
in the LoRa frame: the payload, the preamble, the header and CRC.  

SF7 

Frequency 

Time 

Center frequency 

High frequency 

Time of a symbol transmitted in SF 12 

Low frequency 

SF8 

SF9 

SF10 

SF11 

SF12 

Time of a symbol transmitted in SF 11 
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Figure 15: Time on Air of a LoRa frame 

𝑇𝑇𝑟𝑟𝑑𝑑𝑃𝑃 𝑃𝑃𝐷𝐷 𝐴𝐴𝑟𝑟𝑃𝑃 =  𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 .𝑇𝑇𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎, where 𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 is the number of symbols present in the LoRa 
frame. 

Later on, we will discuss a way to calculate 𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 in order to find the Time on Air of a LoRa 
transmission. 

 

3.2 LoRa® and LoRaWAN® bit rate 
3.2.1 LoRa bit rate 

Since each symbol consists of SF bits, the bit rate is: 

𝑑𝑑𝑟𝑟𝑟𝑟 𝑅𝑅𝑟𝑟𝑟𝑟𝑃𝑃 = 𝑆𝑆𝐹𝐹.
𝑑𝑑𝑟𝑟𝐷𝐷𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ

2𝑆𝑆𝑆𝑆
 

 The higher the Spreading Factor, the lower the bit rate. 
 The higher the bandwidth, the higher the bit rate. 

Exercise: Consider the following two cases: case 1 (SF7, 125 kHz) and case 2 (SF12, 125 kHz). Give 
the corresponding bit rate. 

Answer: 

■ Case 1: For SF7, 125 kHz  >  bit rate = 6,836 bps 
■ Case 2: For SF12, 125 kHz  >  bit rate = 366 bps 

 

3.2.2 Influence of the Coding Rate on the bitrate 
The Coding Rate is a ratio that increases the number of bits transmitted in order to carry out error 
detection and correction. In the case of a CR = 4 / 8, 8 bits are transmitted each time, whereas in 
reality we want to transmit 4 bits. In this example, the overhead ratio is 2, which means that there 
are twice as many transmitted bits. 

PHY Payload  
P bytes CRC Preamble + Header 

Time on Air 
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Table 12: Overhead Ratio and Coding Rate 

Exercise: Using the previous cases (SF7, 125 kHz) and (SF12, 125 kHz) with a CR of 4/5, give the 
corresponding bit rate. 

Answer: 

■ Case 1: For SF7, 125 kHz and CR4/5 >  bit rate = 6.836 kbps / 1.25 = 5469 bps 
■ Case 2: For SF12, 125 kHz and CR4/5  >  bit rate = 366 bps / 1.25 = 293 bps 

The documentation of a LoRa transceiver gives the data rates according to the Spreading Factor, the 
Bandwidth and the Coding Rate. We can check the consistency of the result with our previous 
calculation: case 2 has a bit rate of 293 bps. 

Table 13: Bit rate and LoRa transmission parameters 

 

3.2.3 Bit rate simulation with LoRa modem calculator  
The LoRa modem calculator is a small piece of software provided by Semtech to simulate a LoRa 
transmission according to the configurable parameters: channel, SF, CR, etc... 

■ The LoRa modem calculator for the SX1272 transceiver is available here. 
■ The LoRa modem calculator for the SX1261 / SX1262 transceiver is available here. 
■ An online LoRa simulator is also available here. 

https://www.univ-smb.fr/lorawan/en/
https://semtech.my.salesforce.com/sfc/p/E0000000JelG/a/2R000000HUhK/6T9Vdb3_ldnElA8drIbPYjs1wBbhlWUXej8ZMXtZXOM?__hstc=212684107.b1dab09c5c7b7c03cbfc4c99d8c2394e.1609931376619.1632727014884.1632736029477.63&__hssc=212684107.1.1632736029477&__hsfp=1207226253
https://semtech.my.salesforce.com/sfc/p/#E0000000JelG/a/2R000000Q2OT/GhbZe2lGVNO6sNDUlo6lcHVaKMQvcVCdaYfFeSjyitk
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Figure 16: The SX1272 LoRa modem calculator software 

Exercise: Using the example of the two previous cases [SF7, 125 kHz, CR 4/5] and [SF12, 125 kHz, CR 
4/5], check the "equivalent bitrate" calculations using the LoRa modem calculator software. 

Answer:  

■ Case 1: For SF7, 125 kHz and CR4/5 > bit rate = 5468.75 bps 
■ Case 2: For SF12, 125 kHz and CR4/5  >  bit rate = 292.97 bps 

3.2.4 Influence of the LoRa overhead on the bitrate 
So far, we only focused on the instantaneous bit rate. In reality, the payload is transmitted in the 
same frame as: 

■ A preamble allowing the receiver to synchronize the receiver 
■ Optional headers after the preamble 
■ CRC field (frame integrity check) at the end 

The LoRa data is called PHY payload. 
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Figure 17: LoRa frame 

We are now interested in the PHY payload bit rate: how many payload bits per second can a user 
send or receive? In order to find out, we need to calculate the transmission time of the entire LoRa 
frame (Time on Air). To do so, we use the LoRa modem calculator (see chapter 3.2.3). Figure 18 
simulates the Time on Air for an SF7, a BW125 and a CR4/5 transmission with a 1 byte PHY payload. 

Figure 18: Simulation of Time on Air 

Exercise: Check the Time on Air of the two previous cases [SF7, 125 kHz, CR 4/5] and [SF12, 125 kHz, 
CR 4/5] with 1 byte. Deduct the real bit rate of the PHY payload in both cases. 

Answer:  

■ Sending one byte (PHY payload) in SF7 gives a Time on Air of 25.85 ms 
■ Sending one byte (PHY payload) in SF12 gives a Time on Air of 827.39 ms 

 

■ Case 1: For SF7, 125 kHz and CR4/5  >  bit rateLoRa payload = 8 / 25.85 ms = 309.3 bps 
■ Case 2: For SF12, 125 kHz and CR4/5  >  bit rateLoRa payload = 8 / 827.39 ms = 9.6 bps 

 

PHY payload  
P bytes CRC Preamble + Header 

LoRa data 

LoRa frame 
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3.2.5 Influence of LoRaWAN overhead on the bitrate 
The LoRaWAN protocol needs to provide additional information. In paragraph 4.1.4, we will see the 
differences between LoRa and LoRaWAN. In paragraph 6.1, we will see the details of each field of 
the LoRaWAN frame. However, for the time being, we can simply state that LoRaWAN provides an 
additional service to the LoRa protocol. 

Figure 19 represents a simplified LoRaWAN frame. A LoRaWAN header has been added. This 
LoRaWAN header takes time to be transmitted and therefore increases the overall Time on Air. On 
the other hand, the user data is still 1 byte.  

 

Figure 19: LoRaWAN frame 

At the user level, only the amount of useful data transmitted matters. For example, if users want to 
transmit temperature data (1 byte), their only concern is to know how much temperature data they 
will be able to transmit per second / minute / hour. 

We can simulate this real bit rate with the LoRa modem calculator using the following configuration: 

■ Spreading Factor: SF7 
■ Bandwidth: 125 kHz 
■ Coding Rate: 4/5 
■ Payload length: The LoRaWAN Header (usually 13 bytes) + the user data (1 byte in our 

example). The PHY payload therefore is 14 bytes. 

 

Figure 20: LoRaWAN Time on Air 

User data 
N bytes CRC Preamble + LoRa header 

User data 

LoRaWAN frame  

LoRaWAN header 

PHY payload 
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The LoRa modem calculator gives a Time on Air of 46,3 ms for SF7, 125 kHz and CR4/5.  

We can also verify it through a real LoRaWAN transmission from an end-device to a gateway. In this 
application, we transmit a single byte (a temperature). The gateway saves the transmission 
information of every LoRa packet received. We collect the following values on the gateway for a 
transmission in SF7, then for SF12. We are interested in the airtime (ms). 

Figure 21: Time on Air for one byte transmitted in SF7 and SF12 

We note that: 

■ Sending one byte (user data) in LoRaWAN with SF7 gives a Time on Air of 46,3 ms. 
■ Sending one byte (user data) in LoRaWAN with SF12 gives a Time on Air of 1155.1 ms. 
■ The indicated payload (14 bytes) is much higher than 1 byte, which shows that an additional 

header (LoRaWAN header) has been added (13 additional bytes + 1 payload). 
 

Exercise: Calculate the real user data rate of this transmission for the two cases [SF7, 125 kHz, CR 
4/5] and [SF12, 125 kHz, CR 4/5]. 

Answer:  

■ Case 1: For SF7, 125 kHz and CR4/5 > bit rateLoRaWAN payload  = 8 / 46.3 ms = 172.7 bps 
■ Case 2: For SF12, 125 kHz and CR4/5  > bit rateLoRaWAN payload  = 8/ 1155.1 ms = 6.9 bps 

 

3.2.6 Influence of the duty-cycle in the EU868 band  
According to European regulation, radiofrequency end-devices should transmit no more than 1% of 
time in the 868 MHz band. This is called the duty-cycle. This means that if an end-device transmits 
during 1, it must stay quiet for 99, regardless of the time unit used. 

Example: In Figure 21, when using SF7, the Time on Air is 46.3 ms. The LoRa device should therefore 
not transmit for 99 x 46.3ms = 4.58 seconds. 

Exercise: Using the previous examples [SF7, 125 kHz, CR 4/5] and [SF12, 125 kHz, CR 4/5], what is 
the average bit rate if we take into account the Time on Air and the 1% duty-cycle of the LoRaWAN 
standard? 

Answer: 

■ Case 1: For SF7, 125 kHz and CR4/5    > bit rateLoRaWAN payload 1% = 172.7 bps / 100 = 1.73 bps 
■ Case 2: For SF12, 125 kHz and CR4/5 > bit rateLoRaWAN payload 1% = 6.9 bps /100      = 0.07 bps 
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If we read the specification carefully, we see that the 1% duty-cycle applies to each of the following 
bands: 

■ 863.0 – 868.0 MHz: 1% 
■ 868.0 – 868.6 MHz: 1% 

This means that if a LoRa end-device sends a LoRa frame on the 867.1 MHz channel (part of 863.0 - 
868.0 MHz) this device is still allowed to send another frame on the 868.1 MHz channel (part of 
868.0 – 868.6 MHz). 

 

3.2.7 Influence of the LoRaWAN server use policy 
The 1% duty-cycle is a specific parameter which applies to the free European frequency band RF 868 
MHz (EU868). Apart from that, the LoRaWAN server can limit the number of messages you are 
allowed to send. 

For example, The Things Network community edition contains a limit that prevents an end-device 
to overload the network. 

"The uplink airtime is limited to 30 seconds per day (24 hours) per node and the 
downlink messages to 10 messages per day (24 hours) per node. If you use a 
private network, these limits do not apply." 

3.3 Simulation of a LoRa transmission 
3.3.1 Time on Air calculation 

The Time on Air depends on the number of symbols sent in a LoRa frame and the time of one symbol. 

𝑇𝑇𝑟𝑟𝑑𝑑𝑃𝑃 𝑃𝑃𝐷𝐷 𝐴𝐴𝑟𝑟𝑃𝑃 =  𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 .𝑇𝑇𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎   where 

■ 𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 is the number of symbols present in the LoRa frame. 

■ 𝑇𝑇𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 = 2𝑆𝑆𝑆𝑆

𝑑𝑑𝑟𝑟𝐿𝐿𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ
 is the time of one symbol. 

𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 depends on many LoRa parameters and can be summarised using the following formula: 

𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 = (𝐷𝐷𝑝𝑝𝑃𝑃𝑃𝑃𝑟𝑟𝑑𝑑𝑠𝑠𝑎𝑎𝑃𝑃 + 4,25) + 8 + 𝑑𝑑𝑟𝑟𝑥𝑥 �𝐷𝐷𝑃𝑃𝑟𝑟𝑙𝑙 �
8.𝑃𝑃𝑟𝑟𝐹𝐹𝑙𝑙𝑃𝑃𝑟𝑟𝑑𝑑 − 4. 𝑆𝑆𝐹𝐹 + 28 + 16 − 20.𝐻𝐻

4(𝑆𝑆𝐹𝐹 − 2.𝐷𝐷𝐷𝐷) � (𝐶𝐶𝑅𝑅 + 4),0� 

Where: 

■ Payload is the LoRa PHY payload 
■ SF is the Spreading Factor 
■ H=0 when the Header is enabled and H=1 otherwise 
■ DE=1 when the low data rate optimization is enabled, 0 otherwise 
■ CR is the Coding Rate from 1 to 4 

Exercise: Check the Time on Air value found in Figure 20 (46,3 ms) 

Answer:  𝐷𝐷𝑝𝑝𝑃𝑃𝑃𝑃𝑟𝑟𝑑𝑑𝑠𝑠𝑎𝑎𝑃𝑃 = 8,       Payload = 14,      SF = 7,      H = 0,      DE = 0,      CR = 1,      so 

𝐷𝐷𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 = (8 + 4,25) + 8 + 𝐷𝐷𝑃𝑃𝑟𝑟𝑙𝑙 �
8 ∗ 14 − 4 ∗ 7 + 28 + 16

4 ∗ 7
� (1 + 4) = 45.25 𝐿𝐿𝐹𝐹𝑑𝑑𝑠𝑠𝑃𝑃𝑙𝑙𝐿𝐿 
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𝑇𝑇𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 =
2𝑆𝑆𝑆𝑆

𝑑𝑑𝑟𝑟𝐷𝐷𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ
= 1.024𝑑𝑑𝐿𝐿 

𝑇𝑇𝑟𝑟𝑑𝑑𝑃𝑃 𝑃𝑃𝐷𝐷 𝐴𝐴𝑟𝑟𝑃𝑃 = 45.25 ∗ 1.024 = 46.3 ms 

 

3.3.2 Chirp modulation (Matlab) 
The LoRa modulation generates Chirps named symbol(t) mixed with a local oscillator signal named 
channel(t) in order to shift the Chirp around the channel frequency (fchannel) and therefore generate 
lora(t). 

 

Figure 22: LoRa modulation block diagram 

Such a modulator can be simulated using Matlab with SF12 and BW125. There is 212 = 4096 different 
symbols (𝐷𝐷 ∈  [0; 4096]). Each symbol represents 12 bits. 

𝑇𝑇𝐿𝐿𝑠𝑠𝑑𝑑𝑠𝑠𝑃𝑃𝑎𝑎 =
2𝑆𝑆𝑆𝑆

𝑑𝑑𝑟𝑟𝐷𝐷𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ
= 32,768 𝑑𝑑𝐿𝐿 

Figure 23 presents the spectrogram of symbol(t) for four different indexes: n=0, 1024, 2048 and 
3072. 

 
Chirp modulator Symbol index: n   

symbol(t)
 

Local oscillator 
frequency fchannel 

lora(t) 

channel(t) 
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Spectrogram of symbol(t) with n = 0 Spectrogram of symbol (t) with n = 1024 

  
Spectrogram of symbol (t) with n = 2048 Spectrogram of symbol (t) with n = 3072 

  
Figure 23: Symbol spectrogram simulation 

 

3.3.3 Chirp demodulation (Matlab) 
The first stage of the demodulation process shifts lora(t) in a base-band signal in order to find the 
transmitted symbol. This is then mixed with down(t) which is a down-chirp signal. The result 
demod(t) is filtered and we use FFT to recover the symbol index n, thus the 12 bits. 

 

Figure 24: LoRa demodulation block diagram 

Such a demodulator can be simulated using Matlab with an SF12 and a BW125. Here, the first step 
is to find demod(t) which frequency is an image of the symbol index n. 
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Spectrogram of down(t)  

 

 

Spectrogram of symbol(t) with n = 1024 Spectrogram of demod(t) 

  
Spectrogram of symbol (t) with n = 2048 Spectrogram of demod(t) 

  
Figure 25: LoRa demodulation spectrogram for n =1024, 2048 

Now, we can imagine a real signal received on the demodulator: symbol(t) is composed of 12 
symbols with n taking the following random values: 153, 4012, 2122, 251, 947, 3050, 21, 1555, 2954, 
84, 454, 812. 
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Spectrogram of symbol(t) with 12 n values Spectrogram of demod(t) 

  
Figure 26: LoRa demodulation spectrogram for 12 n random values 

The index can easily be extracted from demod(t) with an inverse FFT algorithm. 

3.4 Real test of a LoRa transmission 
For this demonstration, we use a LoRa end-device transmitting a simple Payload with the following 
parameters: 

■ Channel: 868.1 Mhz 
■ Spreading Factor: 12 
■ Bandwidth: 125 kHz 
■ Coding Rate: 1 (4/5) 
■ Number of preamble: 8 
■ LoRa PHY payload: "HELLO" 

The SDR (Software Defined Radio) ADALM-PLUTO is the LoRa receiver. We use SDR Angel [ 
https://github.com/f4exb/sdrangel ] to pilot the ADALM PLUTO and display the LoRa modulation. 

Figure 27: Analog device ADALM PLUTO 

In the following spectrogram, we can see the 8 up-chirp (preamble) plus 4.25 synchronisation 
symbols (2 up-chirp and 2.25 down-chirp) indicating the start of the frame. 

0 50 100 150 200 250 300 350

Time (ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Fr
eq

ue
nc

y 
(k

H
z)

-140

-120

-100

-80

-60

-40

Po
w

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

0 50 100 150 200 250 300 350

Time (ms)

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Fr
eq

ue
nc

y 
(k

H
z)

-140

-120

-100

-80

-60

-40

Po
w

er
/fr

eq
ue

nc
y 

(d
B

/H
z)

https://www.univ-smb.fr/lorawan/en/
https://github.com/f4exb/sdrangel


 www.univ-smb.fr/lorawan  |  35 
 

 

Figure 28: Spectrogram of a LoRa frame 

Figure 29: Spectrum around 868.1Mhz band 

3.5 Energy consumption  
The LoRaWAN standard targets very low power applications. It is common to find LoRaWAN devices 
with several years of battery life. The real consumption of a LoRa system depends on several 
parameters: 

■ The amount of data to transmit (payload) 
■ The Spreading Factor 
■ The possible collisions at the emission (and thus retransmission) 
■ The request for acknowledgement of the transmitted frames 
■ The duty-cycle 
■ The transmission power of the transceiver 
■ The power consumed in standby between two transmissions 

This online simulator gives a first approximation of the consumption and therefore the autonomy 
of a LoRaWAN end-device. 
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4 The LoRaWAN® protocol 

4.1 LoRa® – LoRaWAN® – LoRa Alliance® 
4.1.1 The LoRa Alliance® 

The LoRa Alliance® is a non-profit organization founded in 2015 that aims to develop LoRaWAN 
technology and the LoRaWAN ecosystem. Its members are global companies that are heavily 
invested in the LoRa Alliance’s growth. Any organization can apply to become a member of the LoRa 
Alliance and participate in the LoRaWAN development.  

 

Savoie Mont Blanc University is a member of the LoRa Alliance since 2021. 

4.1.2 Protocol versions 
One of the main roles of the LoRa Alliance is the specification and evolution of the LoRaWAN 
standard. Here are the different versions of LoRaWAN and their evolution over time. 

■ Version 1.0.0 (January 2015): Initial version of the LoRaWAN specification. 
■ Version 1.0.1 (February 2016): Addition of new frequency plans for China and Australia. 

Correction and clarification on many minor points. 
■ Version 1.0.2 (July 2016): The physical layer section is now a separated document called 

"LoRaWAN Regional Parameters". First stable release. 
■ Version 1.1 (October 2017): Improved security and roaming (add new root keys and session 

keys). New frame counters and new MAC Commands). JoinEUI replaces AppEUI. 
Clarification of class B and class C. 

■ Version 1.0.3 (July 2018): version 1.0.3 = version 1.0.2 + class B section of the version 1.1. 
■ Version 1.0.4 (October 2020): AppEUI becomes JoinEUI. Many clarifications. Last version 

1.0.x. 

We notice that version 1.1 was published very early on, but was not yet adopted by the industry. 
The LoRa Alliance continued the clarification of version 1.0.x by adding version 1.0.3 and version 
1.0.4, which should be the last ones in the 1.0.x series. 

Unless clearly specified, this document deals with LoRaWAN standard version 1.0.x. 

You can find on the LoRa Alliance resource HUB, all versions of the LoRaWAN specification: 

■ LoRaWAN specification version 1.0 
■ LoRaWAN specification version 1.0.1 
■ LoRaWAN specification version 1.0.2 
■ LoRaWAN specification version 1.0.3 
■ LoRaWAN specification version 1.0.4 
■ LoRaWAN specification version 1.1 

https://www.univ-smb.fr/lorawan/en/
https://lora-alliance.org/
https://lora-alliance.org/resource-hub/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-0/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-0-1/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-0-2/
https://lora-alliance.org/resource_hub/lorawan-specification-v1-0-3/
https://lora-alliance.org/resource_hub/lorawan-104-specification-package/
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4.1.3 Regional parameters 
When the LoRa Alliance releases a specification, it provides another document called the LoRaWAN 
regional parameters. This companion document describes the LoRaWAN regional parameters for 
different regulatory regions worldwide. Separating the regional parameters from the protocol 
specification allows addition or modification of new regions without impacting the latter. 

The LoRaWAN specification: This document details the LoRaWAN standard such as the end-device 
class, the message format, the frame format, the list of MAC commands, the activation modes (ABP, 
OTAA), etc… 

The regional parameters: This document details the specific parameters for each region (EU868, 
EU433, US915,…) such as the channel frequencies, the data rate, the output power, the maximum 
payload size, etc… 

4.1.4 Differences between LoRa and LoRaWAN  
LoRa is the type of modulation used between two LoRa end-devices or between an end-device and 
a gateway. When we talk about the whole communication chain (from the end-device to the 
LoRaWAN server), we talk about the LoRaWAN standard. LoRaWAN is an extension of the LoRa 
protocol that gives the capabilities to securely connect the device to a server in order to provide 
data to the end user. 

■ LoRa physical layer: Type of modulation (Chirp Spread Spectrum) and the physical frame 
format used to send data between a transmitter and a receiver. 

■ LoRaWAN standard: Network architecture (end-device, gateways, servers) and a more 
specific frame format allowing a LoRaWAN end-device to securely transmit data to a 
LoRaWAN server. 

4.2 Structure of a LoRaWAN network 
Figure 30 shows the entire LoRaWAN architecture. On the left side, there is the LoRaWAN end-
device that transmits data. The user is on the other side and receives the transmitted data through 
the network. 

https://www.univ-smb.fr/lorawan/en/
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Figure 30: Overall architecture of a LoRaWAN network 

The LoRaWAN end-devices, gateways, Network Server and Application Server are at the heart of the 
LoRaWAN architecture, but the IoT platform and the user connection have nothing to do with it. It’s 
just a classic web service. 

 

4.2.1 LoRaWAN end-devices 
LoRaWAN end-devices are electronic embedded systems belonging to the IoT world: low power 
consumption, small size and low cost. They come with a LoRa radio transceiver to reach gateways. 
A LoRaWAN end-device does not specifically communicate with one single gateway: all gateways 
present in the coverage area receive the device’s messages and process them. 

There are hundreds of LoRaWAN end-device manufacturers. A few examples are: 

■ ATIM [ www.atim.com ] Designer and manufacturer of wireless data 
transmission solutions since 1996. Pioneer on LPWAN technologies. 

■ nke-WATTECO [ www.nke-watteco.fr ] Designer and manufacturer of 
radiofrequency transmitters for many fields of application. 

■ adeunis  [ www.adeunis.com ] IoT sensors specialist. Expert in LPWAN 
network. 

■ Abeeway [ www.abeeway.com ] Provider of power-efficient geolocation 
solutions. 

Devices Gateways 

Network 
Server 

Application 
Server 

IoT platform 

User 

Internet Internet 

LoRaWAN server 

 

https://www.univ-smb.fr/lorawan/en/
http://www.atim.com/
http://www.nke-watteco.fr/
http://www.adeunis.com/
http://www.abeeway.com/
https://www.atim.com
https://www.nke-watteco.fr/
https://www.adeunis.com/
http://www.abeeway.com/


 www.univ-smb.fr/lorawan  |  39 
 

4.2.2 LoRaWAN gateways  
LoRaWAN gateways listen to all channels and Spreading Factors at the same time. When a LoRa 
frame is received, it transmits its content over the Internet to the Network Server that has been 
previously configured in the gateway. 

On one side, the gateway receives a LoRa modulation on its antenna, and on the other side, it is 
connected to the Internet via any possible backhaul: Wi-Fi, 3G, 4G, 5G, Ethernet, LTE-M… 

 

Figure 31: The LoRaWAN gateway 

Each LoRaWAN gateway has a unique identifier (64 bits EUI). This ID is useful to register and activate 
a gateway on a Network Server. 

4.2.3 The Network Server  
The Network Server receives the messages transmitted by the gateways and removes duplicate 
packets (several gateways may receive the same message and transmit them to the same Network 
Server). Then the Network Server authenticates the message thanks to a 128-bit AES key called 
NwkSKey (Network Session Key). Note: we are talking about authentication, not encryption. 
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Figure 32: Authentication between the LoRaWAN end-device and the Network Server 

■ If the authentication process fails, the Network Server drops the LoRaWAN message. 
■ If the authentication process succeeds, the Network Server transfers the message to the 

Application Server. 

4.2.4 Application Server  
The Application Server receives encrypted messages from a Network Server. The encryption and 
decryption is done thanks to a 128-bit AES key called AppSKey (Application Session Key). We will 
explain this process in detail in chapter 4.2.7. 

 

Figure 33: Encryption between the LoRaWAN end-device and the Application Server 

4.2.5 The IoT platform 
The IoT platform is the user application interface. Its three main assets are: 
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1. A connector with the Application Server to collect the data. Most of the time, this is done 
either thanks to the HTTP or the MQTT protocol. In the development phase, we sometimes 
use the non-secure versions of these protocols. Obviously, we would use HTTPS and MQTTS 
during real-life asset deployment. 

2. A database to store data. 
3. A dashboard accessible by the user via a web page or a mobile App. 

 

Figure 34: Connection between the Application Server and the IoT platform 

In LoRaWAN, we mostly use uplink transfer (data from the end-device to the servers). As we will 
explain in section 4.3, it is also possible to transfer data to the end-devices using a downlink transfer. 

 

4.2.6 Network Server and Application Server = LoRaWAN server 
The LoRaWAN server is the association of the Network Server and the Application Server. 

The term "LoRaWAN server" is not defined by the LoRa Alliance. It is just used in this book to 
combine the notions of authentication and encryption. 

■ A Network Session Key (NwkSKey) exists for authentication between the LoRaWAN end-
device and the Network Server. 

■ An Application Session Key (AppSKey) exists for encryption between the LoRaWAN end-
device and the Application Server. 
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Figure 35: Authentication and encryption process 

Unfortunately, the Network Server and the Application Server are often used in the same 
infrastructure. This is not the initial idea of a LoRaWAN Network since it does not provide end-to-
end security. 

End-to-end security is the ability to have the user message encrypted on the end-device and 
decrypted on the user application side (IoT platform for example). 

Any time you see your data decrypted in your LoRaWAN server, that means that end-to-end security 
is not enabled. The example below shows a clear "01 02 03 04 05" payload sent earlier by an end-
device. Your security standard might not accept that your LoRaWAN server provider can see your 
data. 

Figure 36: "01 02 03 04 05" clear message in the LoRaWAN server 

The solution is to integrate your own Application Server. This is not always easy but once the 
communication between the Network Server and the Application Server will be normalized (by the 
LoRa Alliance), the optimized architecture would be as follows: 
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Figure 37: End to end security in a LoRaWAN Network 

In that situation, the name "Application Server" (defined by the LoRa Alliance) will make more sense 
as it will really be the user Application combined with the promised end-to-end security. 

 

4.2.7 Data encryption 
The Application Session Key (AppSKey) is used to encrypt the user data on the LoRaWAN end-device. 
The data will be decrypted on the Application Server. This is a symmetric encryption, so AppSKey on 
the end-device should be the same as the one stored on the Application Server. 

 

Figure 38: Encryption and decryption process 

There is no way for the gateway and the Network Server to understand the real value of the user 
data. The channel is secured (confidential). 

4.2.8 Authentication with the Network Server  
The Network Session Key (NwkSKey) is used for authentication between the LoRaWAN end-device 
and the Network Server. In order to perform this authentication, a MIC (Message Integrity Control) 
field is added to the frame. The MIC depends on the encrypted transmitted data and the NwkSKey. 
During reception, the same calculation is performed. If NwkSKey is the same in the end-device and 
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in the Network Server, then the MIC transmitted should be the same as the one generated during 
reception. 

 

Figure 39: device authentication by the Network Server 

 

4.2.9 Combining authentication and encryption 
We can now represent in the same figure the construction of the LoRaWAN frame with both 
authentication and encryption. 

 

Figure 40: Encryption, then Authentication 

On the server side, the decryption process applies only if authentication succeeds. 

4.3 LoRaWAN end-device classes 
LoRaWAN end-devices are classified in three categories (A, B, C) according to their power 
consumption and their downlink capabilities: the ease with which a user can transmit a frame to 
the end-device. 
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4.3.1 Class A (All): minimal power application 
All LoRaWAN devices are class A devices. Each end-device can transmit (uplink) to the gateway 
without verifying the gateway’s availability. This transmission is followed by two very short 
reception windows. The server (via the gateway) can transmit a downlink message during the RX1 
or RX2 slot, but not both. 

 

Figure 41: Receive slots for a class A end-device. 

The duration of the windows must be at least the preamble length (12.25 Tsymbol). When a preamble 
is detected, the receiver must remain active until the end of the transmission. If the frame received 
during the first reception window was destined to the LoRaWAN device, then the second window is 
not opened. 

First reception window RX1: 

■ Slot RX1 is programmed by default at 1 second +/-20 µs after the end of the uplink 
transmission. This value can be changed according to the Network Server configuration. 

■ The channel, Spreading Factor and bandwidth are the same as those chosen during the 
transmission (uplink). 

Second reception window RX2:  

■ Slot RX2 is programmed by default at 2 seconds +/-20 µs after the end of the uplink 
transmission. This value can be changed according to the Network Server configuration. 

■ The channel, Spreading Factor and bandwidth are configurable but static. 

 A class A end-device can't receive if it has not transmitted uplink data. Therefore, we can't 
easily reach a class A end-device. 

All end-devices start and join the network as class A end-devices. 
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4.3.2 Class B (Beacon): scheduled reception slot 
Class B end-devices behave in the same way as class A devices, but other reception windows are 
scheduled at specific times. In order to synchronize the LoRaWAN end-device reception windows, 
gateways must transmit beacons on a regular basis. 

 

Figure 42: Receive slots for a Class B device 

A class B end-device can be reached regularly without necessarily having to transmit. On the 
other hand, it consumes more power than a class A device. 

All end-devices can decide to switch to class B if its firmware supports it. The complete specification 
for class B end-devices has been released since the launch of the 1.0.3 version of the LoRaWAN 
standard. 

4.3.3 Class C (Continuous): Continuously listening 
Class C devices have reception windows that are constantly open between two uplinks. These 
devices consume considerably more power than class A and class B devices. 
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Figure 43: Reception slots for a class C device 

The LoRaWAN end-device is continuously listening between two uplinks messages. All RX slots are 
set to the same parameters (channel, Spreading Factor and bandwidth) as RX2 except for the RX1 
windows that still have the same behaviour as in class A and B. 

A class C end-device is always reachable. However, this class is the most energy consuming of 
the three. 

All end-devices can decide to switch to class C if its firmware supports it. 

4.3.4 Summary of end-device classes 
From the previous figures, we note that: 

■ A class B end-device is also a class A device (RX1 and RX2 slots are still present). 
■ A class C end-device is also a class A device (RX1 and RX2 slots are still present). 

Class B and class C are therefore an extension to class A. We can present the LoRaWAN end-device 
classes as follows: 
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Figure 44: Power consumption and downlink capabilities 

 

4.3.5 Which gateway for downlink? 
The common data transfer in LoRaWAN is the uplink. However, a user might need to send data to 
its end-device and therefore use LoRaWAN’s downlink capabilities. In that case, one may wonder 
which gateway will be selected to transfer the data. Indeed, the location of the LoRaWAN end-device 
is not necessarily known in advance and obviously, all gateways will not send the message over the 
entire network. 

The gateway used for the downlink is the one that received the last uplink message. If several 
gateways received the last uplink message, a selection is made with the RSSI value to ensure the 
best chance of reaching it. 

A downlink message will never reach a LoRaWAN end-device if it has never been transmitted 
before, regardless of its class A, B or C. 

4.4 Activation of LoRaWAN end-devices: ABP and OTAA 
In LoRaWAN, the three essential elements for communication are the DevAddr for the identification 
of the end-device, as well as two keys: the NwkSKey for authentication and the AppSKey for 
encryption. Two methods are possible to provide this information to both the end-device and the 
LoRaWAN server: 

■ Activation By Personalization: ABP 
■ Over The Air Activation: OTAA 

4.4.1 Activation By Personalization (ABP) 
ABP is the simplest method. It is therefore the one we tend to use when testing a prototype and 
setting up a LoRaWAN communication. 

■ Static DevAddr, NwkSKey and AppSKey are stored in the end-device. 
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■ The same DevAddr, NwkSKey and AppSKey are stored in the LoRaWAN server. 

In ABP, all the information needed for communication is already known by the end-device, the 
Network Server and the Application Server. 

 

Figure 45: DevAddr, NwkSKey and AppSKey in ABP 

As soon as the end-device has been configured, it can send and receive LoRaWAN messages. 

 

4.4.2 Over The Air Activation (OTAA) 
With this activation mode, the DevAddr, AppSKey and NwkSKey will be generated during a Join 
procedure when the LoRaWAN end-device connects to the Network Server. To achieve this Join 
procedure, the LoRaWAN end-device must be configured with: 

■ DevEUI 
■ AppEUI/JoinEUI 
■ AppKey 

The Network Server must know the same DevEUI, AppEUI/JoinEUI, and AppKey and the main 
purpose of the Join-Request is to retrieve the final configuration with DevAddr, NwkSKey and 
AppSKey on both sides. 

Network Server 
Application Server 

Devices 1 

DevAddr 1 

NwkSKey 1 

AppSKey 1 

DevAddr 1 

NwkSKey 1 

AppSKey 1 

DevAddr 2 

NwkSKey 2 

AppSKey 2 

Devices 2 

DevAddr 2 

NwkSKey 2 

AppSKey 2 

Parameters stored on the server 

  Parameters stored in  
the Device 

https://www.univ-smb.fr/lorawan/en/


 www.univ-smb.fr/lorawan  |  50 
 

All the items named "EUI" (Extended Unique Identifier) are always unique and are 8 bytes large. 

 

Figure 46: Parameter stored before the Join-Request (OTAA) 

Once the Join-Request has taken place, the generated parameters DevAddr, NwkSKey and AppSKey 
are saved on both sides. 

 

Figure 47: Configuration after the Join-Request (OTAA) 

Later on we will explain the pros and cons of each activation mode. For the moment, we need to 
understand the meaning of the initial configuration stored in the end-device and on the server 
before execution of the Join-Request: 

■ DevEUI: Unique Identifier for the LoRaWAN end-device. This is equivalent to a MAC address 
on ethernet. Some LoRaWAN end-devices already have a fixed DevEUI stored during factory 
firmware programming and cannot be changed. 

■ AppKey: AES 128 key used to authenticate the Join-Request, to encrypt the Join-Accept and 
to generate the session keys. This key must be kept secret and never be shared with anyone. 

■ AppEUI/JoinEUI: This parameter has different meanings depending on the LoRaWAN 
version. In LoRaWAN 1.0.3 and prior versions, it was an application identifier (AppEUI). From 
LoRaWAN 1.0.4 onwards, this parameter has been renamed to JoinEUI as it defines a Join 
Server identifier. 
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To keep things simple, we don’t use any Join Server for the moment. So we can simplify this EUI and 
use "0000000000000000" as the AppEUI/JoinEUI. 

As a reminder, the purpose of the final configuration after the Join procedure is: 

■ NwkSKey: Used for authentication with the Network Server. 
■ AppSKey: Used for data encryption with the Application Server. 
■ DevAddr: 32-bit identifier within a LoRaWAN network. 

Figure 48 shows the simplified presentation of the Join procedure. 

 

Figure 48: Join-Request - Join-Accept in OTAA 

4.4.3 The Join procedure 
Figure 48 presents only the simplified Join procedure. In this chapter, we will obtain a better 
understanding of the process. 
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Figure 49: Join-Request and Join-Accept procedure in detail 

(1) - The LoRaWAN end-device transmits a MIC (Message Integrity Code) to authenticate its request 
so that only an end-device registered on the Network Server can trigger a Join-Accept response. The 
MIC field (4 bytes) is calculated thanks to the AppKey, JoinEUI, DevEUI and DevNonce. The Join-
Request frame is not encrypted, so we can easily see the AppEUI/JoinEUI and the DevEUI on the 
activity logs of our gateway or Network Server. DevNonce is just a random number to prevent replay 
attacks. 

Figure 50: Join-Request MAC payload 

Figure 51 presents a Join-Request captured from an end-device in Actility’s LoRaWAN server using 
the Wireless-Logger tool. We can clearly see DevEUI, JoinEUI, DevNonce and MIC (no encryption). 
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Figure 51: DevEUI, JoinEUI, DevNonce and MIC in a Join-Request. 

(2) If the end-device is authenticated, then the Network Server generates NwkSKey and AppSKey. 

(3) A Join-Accept frame is scheduled 5 seconds (RX1) or 6 seconds (RX2) after the Join-Request. The 
NwkSKey and AppSkey are not directly transferred. 

 

Figure 52: Join-Accept MAC payload 

The DevAddr and the NetID are the two first pieces of information that the end-device saves. It also 
receives parameters needed for a proper communication with the Network Server: 

■ the DownLink Settings (DLSettings) 
■ the delay for the downlink (RXDelay) 
■ the Channel Frequency List that the end-device has to use (CFList) 

The last value is the JoinNonce which has to be used to recalculate the NwkSKey and AppSkey on 
the end-device side. 

The Join-Accept is encrypted by the AppKey, so only the end-device can understand its content. 
Figure 53 represents the Join-Accept with its encrypted content captured 5 seconds after the Join-
Request. 

Figure 53: Join-Accept 

(4) The end-device generates the NwkSKey and AppSkey using the content of the Join-Accept. 

(5) The AppSKey is transferred to the Application Server. 
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In the most recent revision of the specification, the Network Server is not in charge of the Join 
procedure anymore. The Join procedure is handled by another server called Join Server. This 
means the AppSKey is not known by the Network Server and therefore the Network Server 
doesn't have access to the user data. This is a great improvement in terms of security. We will 
study this architecture later on in this book. 

4.5 Pros and cons of ABP and OTAA 
We have discussed the two different methods to activate a device. We now need to explain when it 
is more appropriate to use one or the other. 

4.5.1 Security 
The weak point of each method is the key permanently stored in the LoRaWAN end-device: 

■ Session keys: NwSKey and AppSKey in ABP 
■ Root Key: AppKey in OTAA 

They therefore have to be stored in highly secured memories. 

 

Figure 54: Keys stored in a secured memory 

However, since the ABP method keeps the session keys forever, there is a greater chance of them 
being stolen by brute force attack, especially if the end-device replays the same sequences many 
times, or resets with the same behaviour: this was allowed until LoRaWAN 1.0.3. Moreover, 
manipulating session keys in ABP (if one wants to change network operator for example) gives more 
opportunities to expose the keys and thus make them visible. 

From a security standpoint, the OTAA activation mode should always be preferred. 

4.5.2 Network change 
A client can decide to change their LoRaWAN server provider. In case of ABP activation mode, they 
will have to manually transfer all DevAddr and session keys from one server to the other. They 
cannot even be sure that the old provider has erased all session keys and will therefore be able to 
continue listening to the content of the packet transmitted. This is a security threat. 

In the case of OTAA, a Join Server can be used. We will present later on the role of this server but 
for the time being, we can only say that the client will just have to tell the Join Server that another 
Network Server is used. The root keys (AppKey) can stay in their initial safe place, and only the 
session keys will be regenerated thanks to a new Join-Request. 
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4.5.3 Protection against replay attacks (uplink messages) 
The 128-bit AES keys encrypt the data. Despite this encryption, a known attack in wireless 
technology is the replay attack: the hacker records encrypted frames transmitted on the LoRa 
network and will transmit them again later. Even if the hacker does not understand the content (the 
frames are encrypted), the data that is transported is well understood by the Application Server. 
Actions can therefore be performed simply by repeating a previous frame. 

 

Figure 55: Replay attack 

To avoid this, the LoRaWAN frame includes a variable field called frame counter. This number 
increments itself each time a new frame is transmitted on the end-device. The same kind of counter 
exists on the server side incrementing itself each time it receives a valid frame. 

■ The server accepts a frame only if the frame counter is strictly greater than the last valid 
frame counter received from that device. 

■ If the hacker retransmits the frame the way it was recorded, the frame counter received on 
the server will be lower than or equal to the one on the server side. If so, the server drops 
the frame silently. 

If the hacker decides to modify the frame counter field with a random value, the authentication will 
fail because the calculation of the MIC field (with the Network Session Key) will no longer be valid. 

 

Figure 56: Frame counter to avoid the replay attack 
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The frame counter can prevent a replay attack from happening, but during the development of a 
LoRaWAN end-device it can be a problem. Indeed, each time we restart the microcontroller, our 
frame counter goes back to zero, while the server frame counter keeps incrementing. This can be 
solved in different ways: 

1. Enable the possibility to "Reset Frame Counter" on the end-device. On some LoRaWAN 
servers we have the option to accept any frame counter whatever their values are. Of 
course, we have to keep in mind that this poses a security risk. 

Figure 57: Enabling the "Resets Frame Counters" on TTN LoRaWAN server 

Figure 58: Disabling the "Frame Counter Validation" on ChirpStack LoRaWAN server 

2. Use OTAA activation instead of ABP. Indeed, at each OTAA Join, the frame counter is reset 
on the end-device AND on the server side. 

3. Keep the value of the frame counter in a non-volatile memory and retrieve its value when 
the LoRaWAN end-device restarts. 

Keeping the frame counter in a non-volatile memory is mandatory in the most recent version of 
the LoRaWAN specification. 

Exercise: Try to play the hacker role by producing a replay attack on your LoRaWAN server. 

Solution: 

1. Send a message from your LoRaWAN end-device with a simple payload and check its 
reception on your Application Server. 

2. Check your gateway logs and pick up the PHY payload. You cannot understand it, but you 
will replay it. That is what a hacker does. 

3. Disable the frame counter check on your LoRaWAN server: you open the replay attack 
vulnerability. 

4. Program your end-device in order to send a LoRa frame (not LoRaWAN!) with the PHY 
payload stolen. 

5. You should see the payload on your Application Server. 

If not, ask for help ;-) 

4.5.4 Protection against replay attacks (downlink messages) 
There is another frame counter used for downlink messages. A frame counter on the server side 
increments each time the server sends a downlink message to the end-device. An end-device 
accepts a downlink message only if the frame counter received is equal to or greater than the frame 
counter in the device. 
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Figure 59: Frame counter for uplink and downlink 

Figure 59 presents both the uplink and downlink frame counter captured in Actility’s LoRaWAN 
server using the Wireless-Logger tool. We can clearly see that values increase with each packet. 

 

4.5.5 Protection against replay attacks (Join-Request) 
A hacker can also use a replay attack during the transfer of the Join-Request in OTAA. A counter 
named DevNonce is used for the same purpose. According to version 1.0.4 of the LoRaWAN 
specification, an end-device in OTAA must save this number in a non-volatile memory, or the Join-
Request will not be accepted if the end-device is reset. 

 

4.5.6 Communication parameters 
When we operate in OTAA, the LoRaWAN end-device sends a Join-Request. A Join-Accept is 
returned by the Network Server if the end-device has been registered on this server. We saw in 
chapter 4.4.3 that the Join-Accept includes: 

A DLSettings field: The DLSettings field indicates information on the Spreading Factor and 
Bandwidth that the device should use to receive on RX1 and RX2 receive windows. 

An RX Delay field: The RX Delay field indicates the time between the end of the transmission (uplink) 
and the beginning of the reception window (downlink). We called that RX1 delay. 

A CFList field: CFList indicates the list of all available channels for this network in addition to channels 
0 to 2 (compulsory channel): 868.1 MHz, 868.3 MHz and 868.5 MHz. The other channels assigned in 
the Join-Accept frame (channels 3 to 7). This gives a maximum of 8 channels overall. 

Figure 60: Channels 3 to 7 defined in the Join-Accept CFlist 

These three settings are only present in the Join-Accept frame, so an end-device running in ABP 
cannot benefit from them. 
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Figure 61: DLSettings, RX Delay and CFList parameters 

4.5.7 Summary  
We can therefore summarize the two activation methods in the following table. 

 ABP OTAA 

Global security Secure Very secure 

Frame counter 
management 

Backup in non-volatile memory is mandatory. 
 
Possibility to disable the counter check and open 
a security threat. 

Supported by OTAA 

Network change Complicated and unsecured Supported by OTAA with a Join Server 

Modification  
RX Delay 

DLSettings 
Manage by MAC commands Supported by OTAA 

Adding channels Manage by MAC command Supported by OTAA 

Table 14: Comparison of ABP and OTAA activation methods 

4.6 LoRaWAN frame types 
A LoRaWAN end-device can send and receive frames: 

■ Uplink: Frame sent by the end-device 
■ Downlink: Frame received by the end-device 

If a collision occurs, or if the gateway is out of coverage area, a frame may not reach the Network 
Server. It can be important for an end-device to have a more reliable connection, so there are two 
types of frames. 

■ Unconfirmed: The Network Server doesn't send data acknowledgment. 
■ Confirmed: The Network Server sends data acknowledgement. 
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The connection between the Network Server and the end-device when using downlink shows the 
exact same behaviour. 

■ Unconfirmed: The end-device does not send data acknowledgment. 
■ Confirmed: The end-device sends data acknowledgement. 

We can test these different configurations with the Wireless-Logger tool in Actility’s LoRaWAN 
server. 

4.6.1 Unconfirmed uplink frame 
In case of an unconfirmed uplink frame, there is no way to know whether or not the frame has 
reached the Network Server. This is, however, the most efficient way to communicate in terms of 
power consumption. In Figure 62, we can see the Join-Request, the Join-Accept, and every uplink 
frame ( FCnt = 1, 2, 3) without data acknowledgment. 

 

Figure 62: Uplink unconfirmed 

If we detail an uplink frame, we note that in the MAC header, the MType field indicates that we are 
dealing with an "UnconfirmedDataUp". 

 

Figure 63: Unconfirmed uplink frame 

4.6.2 Confirmed uplink frame 
In case of a confirmed uplink frame, each frame is confirmed with a specific downlink message after 
each uplink. In Figure 64, we can see the Join-Request, the Join-Accept, and every uplink (FCnt = 1, 
2) followed by an acknowledgment (              NFCnt = 0, 1).  

Figure 64: Confirmed uplink frames and acknowledgments 
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If we detail the uplink frame (FCnt = 2) we note that in the MAC header, the MType field indicates 
that we are dealing with a "ConfirmedDataUp". 

Figure 65: Confirmed uplink frame 

We can see that the Network Server sends an ACK in a downlink frame (NFCnt = 1) right after the 
uplink. 

 

Figure 66: Acknowledgment with the ACK Flag 

4.6.3 Unconfirmed downlink frame 
In case of an unconfirmed downlink frame, there is no way to know whether or not the frame has 
reached the end-device. In Figure 67, we can see the Join-Request, the Join-Accept and one 
unconfirmed uplink (FCnt = 1), after which the server scheduled a new unconfirmed downlink. In 
class A, however, a downlink can only be sent after an uplink. The Network Server thus waits to 
receive a new uplink (FCnt = 2) to send the downlink frame (NFCnt = 0). 

 

Figure 67: Unconfirmed downlink frame  

If we detail the downlink frame (NFCnt = 0), we note that in the MAC header, the MType field 
indicates that we are dealing with an "UnconfirmedDataDown". 

 

Figure 68: Unconfirmed downlink frame 
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When the server has several frames to transmit to the end-device, it can take a long time to arrive 
because it must wait for the end-device to transmit first (class A behaviour). To speed up this 
process, it is possible to tell the end-device that other frames are waiting on the server by using a 
specific Flag (Fpending). It will be up to the end-device to decide if it wishes to speed up the 
transmission of these frames (by transmitting more uplink frames). 

To highlight this behaviour, in Figure 69 we present the same scenario as before: Join-Request, Join-
Accept, one unconfirmed uplink (FCnt = 1). We then schedule several downlinks that are queued in 
the Network Server. We then wait for a new uplink (FCnt = 2) to send the downlink (NFCnt = 0). 

 

Figure 69: Frame pending scenario 

Downlink can be sent only one at a time. This means that once sent (NFcnt = 0), the second message 
is still queued on the Network Server. Note the FPending flag. 

 

Figure 70: The FPending flag 

4.6.4 Confirmed downlink frame 
In case of a confirmed downlink frame, each frame is confirmed. The acknowledgment is done in 
the next uplink frame with the ACK bit set. In Figure 71, we can see the Join-Request, the Join-
Accept, and one uplink (FCnt = 1). After that, a confirmed downlink is scheduled. When the next 
uplink arrives (FCnt = 2) the confirmed downlink is sent (NFCnt = 0). The next uplink (FCnt = 3) carries 
the data acknowledgment. 

 

Figure 71: Confirmed downlink  
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If we detail out the downlink frame (NFCnt = 0), we note that in the MAC header, the MType field 
indicates that we are dealing with a "ConfirmedDataDown". 

 

Figure 72: Confirmed downlink frame 

We also see that the following uplink frame (FCnt = 3) has its ACK flag set to 1. 

 

Figure 73: Acknowledgment with the ACK flag 

4.6.5 Confirmed uplink and confirmed downlink 
A confirmed uplink and downlink can occur at the same time. Take a look at this scenario: 

 

Figure 74: Confirmed uplink and confirmed downlink 

■ FCnt = 2 ConfirmedDataUp Uplink data 
■ NFCnt = 1 ConfirmedDataDown Downlink data + Flag ACK to confirm FCnt =2 
■ FCnt = 3  ConfirmedDataUp Uplink data + Flag ACK to confirm NFCnt =1 
■ NFCnt = 2  ConfirmedDataDown No data + Flag ACK to confirm FCnt =3 

Even if the LoRaWAN network provides such possibilities, we must be aware that the downlink 
capabilities of these networks are limited. A LoRaWAN communication should limit the downlink 
(data acknowledgments) as much as possible. 

 

4.7 MAC Commands 
For network administration, a set of MAC commands may be exchanged between the Network 
Server and the end-device. On the end-device and Network Server, these commands belong to the 
LoRaWAN stack and should never reach the user application: 

■ The Application Server should never receive these commands. 
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■ The user application in the end-device should not be aware of these commands. 

Each MAC Command has a specific identifier called CID (Command IDentifier). 

CID Command 
Transmitted by 

Description 
Device Network 

 Server 

0x02 LinkCheckReq X  Used by an end-device to validate its connectivity to a network.  

0x02 LinkCheckAns  X 
Answers LinkCheckReq. Contains the received signal power 
estimation, which indicates the quality of reception (link 
margin) to the end-device. 

0x03 LinkADRReq  X Requests the end-device to change Data Rate, TX power, 
redundancy, or channel mask.  

0x03 LinkADRAns X  Acknowledges LinkADRReq  

0x04 DutyCycleReq  X Sets the maximum aggregated transmit duty cycle of an end-
device. 

0x04 DutyCycleAns X  Acknowledges DutyCycleReq. 

0x05 RXParamSetupReq  X Sets the reception slot parameters. 

0x05 RXParamSetupAns X  Acknowledges RXParamSetupReq. 

0x06 DevStatusReq  X Requests the status of the end-device. 

0x06 DevStatusAns X  Returns the status of the end-device, namely its battery level 
and its radio status. 

0x07 NewChannelReq  X Creates or modifies the definition of a radio channel. 

0x07 NewChannelAns X  Acknowledges NewChannelReq. 

0x08 RXTimingSetupReq  X Sets the timing of the reception slots. 

0x08 RXTimingSetupAns X  Acknowledges RXTimingSetupReq. 

0x09 TXParamSetupReq  X Used by a Network Server to set the maximum allowed dwell 
time and MaxEIRP of end-device, based on local regulations. 

0x09 TXParamSetupAns X  Acknowledges TXParamSetupReq.  

0x0A DlChannelReq 
  X 

Modifies the definition of a downlink RX1 radio channel by 
shifting the downlink frequency from the uplink frequencies 
(i.e. creating an asymmetric channel). 

0x0A DlChannelAns X  Acknowledges DlChannelReq.  

0x0D DeviceTimeReq X  Used by an end-device to request the current GPS time.  

0x0D DeviceTimeAns  X Answers DeviceTimeReq  

Table 15: LoRaWAN MAC Commands (source LoRaWAN 1.0.4 spec – LoRa Alliance) 
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4.8 Data Rate, channels and power  
4.8.1 Data Rate (DR) 

As we discussed earlier, the Spreading Factor (SF) and the bandwidth (BW) are the two parameters 
that have an impact on the bit rate. 

𝑑𝑑𝑟𝑟𝑟𝑟 𝑅𝑅𝑟𝑟𝑟𝑟𝑃𝑃 (𝑠𝑠𝑟𝑟𝑟𝑟/𝐿𝐿) = 𝑆𝑆𝐹𝐹.
𝑑𝑑𝑟𝑟𝐷𝐷𝑑𝑑𝑃𝑃𝑟𝑟𝑑𝑑𝑟𝑟ℎ

2𝑆𝑆𝑆𝑆
 

The combination of SF and BW is named DR (Data Rate). In the EU868 band, it is normalized from 
DR0 to DR6. 

Data Rate Spreading Factor Bandwidth 
DR 0 SF12 125 KHz 
DR 1 SF11 125 KHz 
DR 2 SF10 125 KHz 
DR 3 SF9 125 KHz 
DR 4 SF8 125 KHz 
DR 5 SF7 125 KHz 
DR 6 SF7 250 KHz 

Table 16: Data Rate (DR) according to SF and bandwidth 

4.8.2 Adaptive Data Rate (ADR) 
Adjusting the SF and the PT (Power Transmitted) is not straightforward. Even if we find a good 
configuration, the transmission can be altered by the local environment or the weather forecast. To 
overcome this difficulty, an automatic adjustment method has been implemented by the LoRaWAN 
standard: the Adaptive Data Rate (ADR). The idea is to let the Network Server compute the best 
combination of SF / PT. 

To perform this operation, the Network Server checks: 

■ The RSSI (power received on the gateway): The RSSI is compared to the sensitivity of the 
receiver. The RSSI must be higher than the sensitivity after applying a margin. 

■ The SNR of the transmission: The SNR of the transmission must be higher than the minimum 
SNR accepted by the receiver after applying a margin. 

■ The packet loss estimation: By checking the frame counter, the Network Server can estimate 
the number of lost packets during the last transmissions. 

The Network Server computes its result after averaging RSSI and SNR on several uplink frames. The 
ADR algorithm is not defined by the LoRaWAN specification. Each Network Server can use its own 
strategy. Basically, we use the following scheme: 
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Figure 75: Example of an ADR algorithm 

A LoRaWAN device must enable ADR mode (ADR Flag) to use this feature. 

ADR commands are part of the LoRaWAN MAC Commands (see chapter 4.7). 

 

Figure 76: ADR MAC Commands 

LinkADRReq MAC Command is not sent in a separate frame. It is piggybacked in a downlink data 
message. 

Piggybacking is a way of taking advantage of data transfer to include a command, 
acknowledgment or network administration. 

 

Is SNRTransmission > SNRmini + Margin ? 
and / or 

Is RSSI > Sensitivity + Margin ? 

Receiving a new frame 

Increase PT up to its max value 
and / or 

Increase SF up to its max value SF12  

Decrease SF up to its min value SF7 
and / or 

Decrease PT to its min value 

No 

Yes 

Device Network Server 

LinkADRReq The Network Server 
requests a Data Rate 

adaptation. 
The Device answers to tell if 
the request was successful 

or discarded 

 

LinkADRAns 
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Figure 77: ADR MAC Command 

With Wireless-Logger in Actility’s LoRaWAN server, we have the following scenario: an uplink 
confirmed is sent with SF9 and ADR enabled (FCnt = 5). The Network Server uses the 
acknowledgment to send the LinkADRReq MAC command (NFCnt = 7). The next uplink sends the 
LinkADRAns MAC command to confirm the optimization process (FCnt = 6). 

Figure 78: Optimization of the Spreading Factor  

ADR has been enabled for the confirmed uplink (FCnt = 5). 

Figure 79: ADR Flag 

The Network Server uses the confirmation to send the LinkADRReq MAC command (NFCnt = 7). A 
new power transmission and Data Rate (DR5 = SF7) are proposed. 

Device Network 
Server 

Uplink SF9  
ADR activated 

Uplink SF7 + LinkADRAns 
 ADR activated 

A downlink frame is scheduled. 
LinkADRReq is piggybacked. 

Downlink + LinkADRReq 

https://www.univ-smb.fr/lorawan/en/


 www.univ-smb.fr/lorawan  |  67 
 

Figure 80: LinkADRReq MAC Command 

The next uplink sends the LinkADRAns MAC Command to confirm the optimization process (FCnt = 
6). The Spreading Factor is now SF7. 

Figure 81: LinkADRAns Command 

A problem occurs when there is no downlink frame available to piggyback the LinkADRReq 
command. In that case the optimization process never occurs. To prevent that situation, when the 
end-device does not hear from the Network Server for a long time, then it will explicitly ask for an 
optimization. This is done thanks to the ADRAckReq bit. 
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Figure 82: ADRAckReq bit to request Data Rate optimization 

In the following scenario, we only send unconfirmed uplinks. In the uplink frame (FCnt = 77), the 
ADRAckReq bit has been raised, and we can see that the Network Server answers. In this case, no 
optimization had to be done since we already had the best SF7 and PT. 

Figure 83: ADRAckReq bit 

If the end-device does not obtain a response within a given time, communication with the Network 
Server is considered lost and the LoRaWAN end-device will increment SF / PT until it can connect to 
it again. 

View the full video demonstration available on our website:  
www.univ-smb.fr/lorawan/en/videos   

 

The ADR algorithm can also provide a number of retransmissions, so that each unconfirmed 
uplink is sent NbTrans times. The end-device receives the information of NbTrans in the 
LinkADRReq frame as you can see in Figure 80. 

Device Network 
Server 

An optimization is 
proposed 

Downlink + LinkADRReq 

Uplink SF79 - ADR activated 
Uplink SF9 - ADR activated 
Uplink SF9 - ADR activated 

Uplink SF9 - ADR activated + bit ADRACKReq 

Uplink SF7 - ADR activated  + LinkADRAns 

Uplink SF7 - ADR activated 
Uplink SF7 - ADR activated 
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4.8.3 Channels 
LoRa uses different frequency bands in different parts of the world. In Europe, the band used is 868 
MHz [From 863 MHz to 870 MHz]. In this band, the LoRaWAN server defines a plan with a number 
of channels and Data Rates to be used for uplink and downlink. An end-device must know at least 
these three channels: 868.1 MHz, 868.3 MHz and 868.5 MHz from DR0 to DR5. The other channels 
depend on the Network Server. Table 17 represents the mandatory channels. 

 Channels Data Rate Direction 

Mandatory 
868.1 MHz DR0 to DR5 Uplink / Downlink 
868.3 MHz DR0 to DR5 Uplink / Downlink 
868.5 MHz DR0 to DR5 Uplink / Downlink 

Table 17: Mandatory LoRaWAN frequency plan 

On top of this mandatory frequency plan, the LoRaWAN server proposes other channels and DR to 
the end-device during the Join procedure (OTAA). When using ABP, the end-device must stick to the 
mandatory frequency plan, or the user must store them manually in the firmware. 

 Channels Data Rate Direction 

Default EU868  
frequency plan 

867.1 MHz DR0 to DR5 Uplink / Downlink 
867.3 MHz DR0 to DR5 Uplink / Downlink 
867.5 MHz DR0 to DR5 Uplink / Downlink 
867.7 MHz DR0 to DR5 Uplink / Downlink 
867.9 MHz DR0 to DR5 Uplink / Downlink 

869.525 MHz DR3 Downlink 
Table 18: Default EU868 frequency plan 

 Channels Data Rate Direction 

Other  
frequency plan 
(TTN, Actility…) 

867.1 MHz DR0 to DR5 Uplink / Downlink 
867.3 MHz DR0 to DR5 Uplink / Downlink 
867.5 MHz DR0 to DR5 Uplink / Downlink 
867.7 MHz DR0 to DR5 Uplink / Downlink 
867.9 MHz DR0 to DR5 Uplink / Downlink 

869.525 MHz DR0 Downlink 
Table 19: Other EU868 frequency plan 

It is also necessary for an operator to share as many channels as possible with other operators to 
optimize the probability of successful transmission in case of roaming (another operator will carry 
out the reception). The LoRa Alliance has therefore recommended the following channels in case of 
roaming: 

 Channels  Data Rate Direction 
Roaming 

Frequency plan 
 

867,1 MHz DR0 to DR5 Uplink / Downlink 
867,3 MHz DR0 to DR5 Uplink / Downlink 
867,9 MHz DR0 to DR5 Uplink/ Downlink 

Table 20: Roaming frequency plan 

https://www.univ-smb.fr/lorawan/en/


 www.univ-smb.fr/lorawan  |  70 
 

A LoRaWAN gateway must be properly configured with a Network Server frequency plan to 
which it is connected. The end-device configuration is carried out during the Join-Accept. 

4.8.4 Power consumed by the end-device 
The power consumption of a LoRaWAN end-device is directly related to two parameters of the LoRa 
transmission: 

■ Time on Air: the longer the message, the longer the radio will be powered. 
■ Power transmitted PT: The more power is used to transmit, the more power is consumed by 

the end-device. 

Obviously, the first thing is to reduce the power transmission. The direct consequence is that the 
end-device might no longer reach the gateway. Reducing the power transmission can be done only 
if the margin between the power received by the gateway and the gateway sensitivity is large 
enough.  

The second thing is to reduce the Time on Air. A simple solution is to reduce the Spreading Factor 
(SF). Indeed, when the SF is reduced by 1, the Time on Air is divided by two (see chapter 3.1.2). 
However, reducing the SF has an effect on the gateway: it drastically reduces its sensitivity and its 
ability to detect signal among noise.  

As an example, Table 21 lists several transmissions with different SF used on a transmitter. On the 
other hand, we calculate the best sensitivity we can reach on the receiver for each transmission, as 
well as the worst acceptable SNR. 

Transmitter Receiver 
Spreading Factor Sensitivity Minimum SNR 

7 -123 dBm 7.5 dB 
8 -126 dBm 10 dB 
9 -129 dBm 12.5 dB 

10 -132 dBm  15 dB 
11 -134.5 dBm  17.5 dB 
12 -137 dBm 20 dB 

Table 21: SF, Sensitivity and SNR 

Note: Table 21 is a compilation of data from the SX1261 documentation (SNR) and calculations 
performed by the LoRa modem calculator (sensitivity). 

So, reducing the SF and the PT will both result in a lower transmission range. They have to be 
adjusted consistently. The choice of SF and PT is not simple, and we often use an empirical method 
to determine their values by checking the SNR and RSSI on the gateway. Otherwise, we should use 
ADR. 
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5 LoRaWAN networks and LoRaWAN servers 

5.1 The different types of networks  
We have the choice to either set up the entire network infrastructure, or to rely on an operator. We 
distinguish three LoRaWAN architectures. 

■ We can use public operators that have nation-wide operational networks. 
■ We can build our own private LoRaWAN network. 
■ We can build a hybrid network by setting up only one part of the infrastructure. 

5.1.1 Public operator LoRaWAN networks 
Public operators propose their nation-wide LoRaWAN network to connect IoT end-devices. Orange; 
KPN and Proximus are a few examples. They usually have excellent coverage. When using a public 
operator, the user only has to take care of their LoRaWAN end-devices and user application (IoT 
platform). Public operators manage the gateways and the LoRaWAN server. 

 

Figure 84: Infrastructure of a public LoRaWAN network 

The user subscribes to one or more plans to be able to connect their devices. As an example, here 
are the subscriptions proposed by Objenious and Orange in 2022 to have access to their LoRaWAN 
network: 

Orange: 

■ Unlimited uplink (with respect to the duty cycle). 
■ Price of €0.05 for each uplink message. 
■ Subscription varies from €1/month (36 months) to €2/month (without commitment) 

The user journey to connect LoRaWAN end-devices is simple and seamless: 

1 Buy a subscription 
2 Register the devices on the operator platform ("Live Object" for Orange, "Spot" for Objenious) 
3 Activate the devices 
4 Retrieve the data on the operator platform 
5 Redirect your data to an IoT platform. 

As of 2022, there are 165 LoRaWAN network operators in 171 countries. 

Devices 
LoRa Gateways 

Network 
Server 

Application 
Server 

IoT platform 
User Application 

Internet 
Internet 

Gateways and Servers managed by the operator 
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5.1.2 Private LoRaWAN networks 
Everyone is free to create their own private network. You will need to set up your own gateway and 
your own server infrastructure to communicate with your LoRaWAN end-devices. You will also have 
to take care of the administration of the Network Server and Application Server. 

In some gateways, an instance of a LoRaWAN server is proposed. It simplifies the overall 
infrastructure because everything is in a single package (the gateway) but that will considerably limit 
the network capabilities. In Figure 85, we can see that the gateway includes the Network Server and 
Application Server (green solid line). The IoT platform is sometimes also integrated in the gateway 
(dashed green line). 

 

Figure 85: Private Network packaged in a single gateway 

Here is an example of a private LoRaWAN Network packaged in a gateway: 

■ Kerlink: Wanesy SPN (Small Private Network)  

Unless you develop your own LoRaWAN server (which requires a big amount of work), you will have 
to buy this software. The cost depends on the features, the service and the number of 
gateways/end-devices you want to register. Once you have purchased the licence, you will be 
allowed to install the LoRaWAN server on your own infrastructure. This is called an "on premises 
licence". Here are a few examples: 

■ Actility: Actility on customer premises 

■ Kerlink: Wanesy WMC on premises (Wanesy Management Center) 

■ The Things Industries: The Things Stack Enterprise (on premises) 

■ ResIOT: ResIOT Network Server (on premises) 

 

Another possibility to set up a private network is to use a free and open source LoRaWAN server. 
The two well-known open-source stacks are: 

■ The Things Network: The Things Stack.  

Devices 

Network 
Server 

Application 
Server 

IoT platform 

Internet 

Network Server and Application Server are in the Gateway 

https://www.univ-smb.fr/lorawan/en/
https://www.actility.com/enterprise-iot-connectivity-solutions/
https://www.kerlink.com/iot-solutions/iot-network/wanesy-management-center/
https://accounts.thethingsindustries.com/fee-calculator
https://www.resiot.io/en/features/
https://www.thethingsindustries.com/stack/


 www.univ-smb.fr/lorawan  |  73 
 

■ ChirpStack: ChirpStack open-source LoRaWAN®  

 

Figure 86: Infrastructure of a private LoRaWAN network 

The user journey to connect LoRaWAN end-devices in a LoRaWAN private network requires skills: 

1 Buy one or more gateways. 
2 Deploy them on site. 
3 Buy a LoRaWAN server (or use a free one). 
4 Install the LoRaWAN server on your own infrastructure. 
5 Register the devices on your LoRaWAN server. 
6 Activate the devices 
7 Retrieve the data on your server. 
8 Redirect your data to an IoT platform. 

 

5.1.3 Choice of network type: operated or private? 
We can summarize the advantages and disadvantages of each of these network types in Table 22. 

 Private network Operated network 

Subscription costs No subscription Approximately €1.5 / month  
per LoRaWAN end-device 

Infrastructure costs Important investment at the beginning 
(gateways and servers) Included in the subscription 

Skills required Requires skills for installation, administration 
and maintenance Everything is managed by the operator 

Coverage Optimized according to needs Depends on the chosen operator 
Possibility of roaming between operators 

Uplink Unlimited within the duty-cycle Limited according to the subscription 
Downlink Unlimited within the duty-cycle Limited in number or pay-as-you-go 

Table 22: Pros and cons of private and public operated networks 

5.1.4 An alternative, the hybrid LoRaWAN network 
In case none of the previous solutions is suitable, there is an alternate solution which offers a middle 
ground between public and private networks. It has the advantage of managing the network 
coverage using its own gateways, while entrusting the LoRaWAN server infrastructure with a service 
provider in order to limit investments and maintenance. 
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Internet 
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Figure 87: Infrastructure of a hybrid LoRaWAN network 

You will have to buy a cloud-hosted solution for the LoRaWAN server. Here are a few examples: 

■ Actility: ThingPark Entreprise 

■ Kerlink: Wanesy Management as a Service 

■ The Things Industries: The Things Stack Enterprise (Cloud) 

■ Loriot: Loriot Network Server (Cloud) 

■ ResIOT: ResIOT Network Server (Cloud) 

 

On each cloud-hosted LoRaWAN server, very often a free entry with limited gateways and end-
devices is offered. 

■ Actility: ThingPark Community 

■ The Things Network: The Things Stack community Edition  

■ And many others 

The user journey to connect LoRaWAN end-devices in a LoRaWAN hybrid network is as follows: 

1 Buy one or more gateways. 
2 Deploy them on site. 
3 Subscribe to a cloud-hosted LoRaWAN server. 
4 Declare the devices on your LoRaWAN server. 
5 Activate the devices. 
6 Retrieve the data on your server. 
7 Redirect your data to an IoT platform. 

In this course, most of the time, we will use a hybrid network. Indeed, we use our own gateways 
that we connect to a cloud-hosted LoRaWAN server (Actility, TTN, Loriot...). 
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5.1.5 Coverage areas 
The coverage areas of a public network are updated on the operator's websites. For community 
networks, they use specific applications such as TTN Mapper for The Things Stack community 
Edition. The idea is to associate the LoRaWAN end-device with a GPS in the coverage area of the 
gateways. For each received frame, TTN Mapper registers the end-device’s coordinate and displays 
it on a map. 

5.2 LoRaWAN network configuration 
Whatever the chosen solution is, the infrastructure must be operational: 

■ If you have a public operated network, no action needs to be taken. 
■ If you have a hybrid network, your gateways must be connected to the internet and you 

must have subscribed to a cloud-hosted LoRaWAN server. 
■ If you have a private network, your gateways must be connected to Internet, and you must 

have set up the LoRaWAN server yourself. The set up of a LoRaWAN server is described in 
chapter 9. 

The configuration is always the same: 

■ Step 1: Gateway configuration 
■ Step 2: Gateway registration on the LoRaWAN server 
■ Step 3: Device registration on the LoRaWAN server 
■ Step 4: Device configuration 

5.2.1 Step 1: Gateway configuration 
There are many LoRaWAN gateway models on the market. Each model is meant for a particular use 
(indoor, outdoor, prototyping,...). In all cases, here are the elements we need to configure: 

1. The type of Packet Forwarder 
2. The IP address of the Network Server 
3. The channel list and associated Data Rate 

The Packet Forwarder is one part of the internal piece of software that will specify the protocol used 
to communicate with the Network Server. There are many Packet Forwarders available. The most 
famous one probably is the "Semtech UDP Packet Forwarder", but that is also probably the least 
secured one and does not come with many functionalities. "Semtech UDP Packet Forwarder" is now 
deprecated and should no longer be used for deployment. Some Network Servers are compatible 
with several Packet Forwarders, whereas others require a specific one and do not leave you any 
choice. 

The gateway receives LoRaWAN data and transfers it to the Network Server. The gateway must 
know the Network Server IP address as well as the TCP/UDP ports to use. 

The gateway receives a LoRa modulation signal. It only listens to a specific list of channels and Data 
Rates. This information has to be specified in the gateway. 
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Figure 88: List of channels and Data Rates for TTNv3 

If the Packet Forwarder is provided by your LoRaWAN server provider, it already contains the IP 
address and port. There is also a big chance that the information of the channel list and Data Rate 
will be exchanged when the gateway connects on the Network Server. The only thing to do in that 
case, is to install the Packet Forwarder on the gateway. 

For example, if you use Actility’s Network Server then you will need to use the LRR (Long Range 
Relay) Packet Forwarder. When you register your gateway (here a Kerlink iBTS compact), Actility 
proposes to download the gateway image with the LRR already set up (see Figure 89). 

Figure 89: Registration of a gateway on Actility’s Network Server 

 

5.2.2 Step 2: Gateway registration 
The purpose of gateway registration is to allow the gateway to send data to the Network Server. 
This is a very straightforward task. You need to enter: 

■ The Name 
■ The ID 
■ The region (frequency band) 
■ The location (optional) 

The gateway appears in a list in which you usually can check the traffic for debugging. 

5.2.3 Step 3: Device registration 
All LoRaWAN end-devices have a DevEUI. This is a unique identifier that is often stored in the 
firmware and cannot be easily changed. No matter which activation mode you use (ABP or OTAA), 
you need the DevEUI. Even if the ABP activation does not really need it, the DevEUI is useful for the 
Network Server to identify the registered end-devices. 

Devices that are part of a specific use case can be grouped in a specific entity usually called an 
application. This allows the network administrator to apply specific settings to a fleet of end-devices. 
For example: 

■ Add a script to decode the received payload in JSON format. 
■ Add a connection to push the received data to a specific IoT platform. 
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The registration of an end-device requires several pieces of information: 

■ Name: A human-readable identifier 
■ LoRaWAN version: From 1.0.0 to the last available version (see chapter 4.1.2) 
■ Device class: A, B or C. 
■ Regional parameters version: see chapter 4.1.3 
■ Frequency plan: the frequency band you are working with (EU868, US915,…) 
■ Activation mode: ABP or OTAA 

If you do not know the exact LoRaWAN version of your end-device and you just try to set up a 
basic test, you can safely use LoRaWAN version 1.0.0. 

Depending on the chosen activation mode, you will need the following information: 

For ABP (Activation By Personalization): 

■ The DevAddr: you must generate a device address and program it into the end-device. 
■ The NwkSKey: you must generate a Network Session Key and program it into the end-

device. 
■ The AppSKey: you must generate an Application Session Key and program it into the end-

device. 

For OTAA (Over The Air Activation): 

■ The AppEUI/JoinEUI: should be provided by the end-device manufacturer. Otherwise, you 
probably don't use a Join Server so you can use 00 00 00 00 00 00 00 00 to program your 
end-device. 

■ The AppKey: should be provided by the end-device manufacturer. Otherwise, you can 
generate one to program your end-device. 

5.2.4 Step 4: Device configuration 
Whatever the activation mode used, all information stored in the LoRaWAN server must be identical 
to the information stored in the end-device. 

■ If your end-device has been pre-provisioned, no action needs to be taken. 
■ If your end-device is programmable and you generated new root/session keys in the 

LoRaWAN server, you have to program them.  
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6 The LoRa / LoRaWAN frame 

6.1 LoRaWAN protocol layers 
LoRa is a modulation method to transfer data from one point to another. This refers to the physical 
layer and is called LoRa PHY. 

The LoRaWAN protocol adds the end-device authentication, data encryption, acknowledgment, 
network administration, etc. All these protocol properties are added on top of the LoRa protocol, in 
a layer called LoRa MAC. 

Lastly, the application layer simply is the raw user data though there also are other services available 
in the LoRaWAN specification. 

 

Figure 90: LoRaWAN protocol layers 

Each layer adds a functionality. When the frame is sent, the user data is encapsulated in each lower 
layer. The detail of the whole LoRaWAN frame per layer is shown in Figure 91: 

 

Figure 91: LaRaWAN protocol layer 
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6.1.1 Application layer 
Most of the time, the application layer is only composed of the user's data. Before encapsulating 
the data in the LoRaWAN frame, it is encrypted using the AppSKey to secure the transaction. Data 
can be as simple as a single byte from a sensor. The way the user organizes the payload is completely 
free as long as it fits the overall maximum size of a LoRaWAN frame. 

The LoRa Alliance is working on a scheme to publish data format and corresponding codecs. 

 

Figure 92: LoRaWAN application layer 

The LoRaWAN specification proposes three services on the application layer: 

Remote multicast Setup: This application can send frames to a group of end-devices. It runs on port 
200 by default. 

Fragmented data block transport: This application can send a fragmented block of data to one or 
many end-devices. It runs on port 201. 

Clock synchronisation: Precise time can be very useful to synchronously perform a measurement. 
The clock synchronisation application provides a method to synchronize the real time clock of an 
end-device to the network GPS clock with second accuracy. This application runs on port 202. 

Firmware management: This application can send a request to manage the firmware version of the 
end-device. It runs on port 203.  

All these packages are used for FUOTA (Firmware Update Over The Air). 

You can refer to the LoRaWAN advanced book for more details. 

 

6.1.2 LoRa MAC layer 
The LoRa MAC layer is the heart of the LoRaWAN protocol. 
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Figure 93: LoRa MAC layer 

■ The MAC Header field defines the type of message: Join-Request, Join-Accept, data up, data 
down, confirmed, unconfirmed… 

■ The DevAddr is the device address. 
■ The Frame control gives information on the ADR (Adaptive Data Rate), the acknowledgment 

of messages and also gives the length of the optional "Frame Option". 
■ The frame counter properties are detailed in chapter 4.5.3. 
■ The frame option field carries eventual MAC Commands 
■ The Frame Port is the application port. 
■ The frame payload is the encrypted user data. 
■ MIC is the Message Integrity Control that allows the message to be authenticated by the 

Network Server. 

The maximum number of bytes that can be transmitted as a MAC payload (M bytes) is given in the 
following table:  

Data Rate Spreading Factor Bandwidth Max Frame payload (Number N) 
DR 0 SF12 125 kHz 51 bytes 
DR 1 SF11 125 kHz 51 bytes 
DR 2 SF10 125 kHz 51 bytes 
DR 3 SF9 125 kHz 115 bytes 
DR 4 SF8 125 kHz 242 bytes 
DR 5 SF7 125 kHz 242 bytes 
DR 6 SF7 250 kHz 242 bytes 

Table 23: Maximum MAC payload size 

 

6.1.3 LoRa PHY layer 
Transmitting a LoRaWAN message is simple because there is no need for synchronisation between 
the end-device and the gateway. Therefore, the PHY layer is very light and only contains a preamble, 
an optional header and a CRC. 
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Figure 94: LoRa physical layer frame 

The Preamble is represented by 8 symbols + 4.25 = 12.25 Tsymbol (see chapter 3.1 for a reminder of 
the definition of a symbol). 

The optional header is only present in default (explicit) transmission mode. It is transmitted with a 
Coding Rate of 4/8. It indicates the size of the data, and Coding Rate for the rest of the frame. It also 
specifies if a CRC will be present at the end of the frame. 

The PHY payload contains all information of the LoRa MAC Layer. 

The CRC is used to detect errors in the LoRa frame. 

6.2 Gateways and Network Server communication 
The gateway receives a LoRa modulated radio message on one side and transmits an IP frame to the 
Network Server on the other. 

 

Figure 95: Role of the gateway 

Radio interface: The gateway receives a LoRaWAN frame and extracts the PHY payload. The 64 base 
ASCII format is often used (see paragraph 6.3.2). The gateway also extracts all useful information 
from the transmission parameters: SF, Bandwidth, RSSI, Time on Air... etc. 

IP network interface: The gateway transmits all this information in an IP packet to the Network 
Server. The transmitted data is in JSON text format (see paragraph 6.3). 

6.2.1 The Packet Forwarder 
On every gateway, a software called Packet Forwarder is set up to carry out the data transmission 
to the Network Server.  
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Figure 96: LoRaWAN gateway and Network Server 

Depending on the Packet Forwarder used, the communication protocol between the gateway and 
the LoRaWAN server is different. First of all, it is mandatory to check if the Packet Forwarder is 
supported by the Network Server because there are many available while none are imposed by the 
specification. 

■ SEMTECH UDP Packet Forwarder: This was the first widely used Packet Forwarder. It is now 
deprecated because it has no functionalities other than transmitting uplink and downlink 
data. It is also a non-secure protocol. This Packet Forwarder is supported by The Things 
Stack, but according to the documentation, it will be removed in the future. It is still 
supported by ChirpStack. 

■ LoRa Basics™ Station Packet Forwarder: LoRa Basic™ Station is the new Packet Forwarder 
provided by Semtech. It offers many additional features: TLS, gateway software update, 
time synchronization, gateway management, etc...  

■ ThingPark Long Range Relay (LRR) Packet Forwarder: This is the Packet Forwarder used by 
Actility. It is secure and has many functionalities. 

6.2.1 Presentation of UDP Packet Forwarder (Semtech) 
Despite all the shortcomings of Semtech’s UDP Packet Forwarder, its use for educational purposes 
simplifies traffic analysis. The documentation of this protocol is available on GitHub: 
https://github.com/Lora-net/packet_forwarder . In this folder, a file named PROTOCOL.TXT explains 
that this protocol works on top of UDP. 
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Figure 97: Uplink protocol (PUSH_DATA of the Packet Forwarder) 

Packets are sent in UDP to the Network Server in a frame called PUSH_DATA. This frame is 
acknowledged by the Network Server in a frame called PUSH_ACK. 

 

Figure 98: PUSH_DATA frame in Wireshark 

This Packet Forwarder was configured to use the UDP port 1700. The content of the data (data field) 
is detailed in the following table: 

Field |  Byte  | Function 
------|----------------------------------------------------------- 
  [1] |   0    | protocol version = 0x02 
  [2] |  1-2   | random token 
  [3] |   3    | PUSH_DATA identifier = 0x00 
  [4] |  4-11  | Gateway unique identifier (MAC address) 
  [5] | 12-end | JSON object, starting with {, ending with } 
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Figure 99: Semtech UDP Packet Forwarder analysis 

The JSON object of the transmission is as follows: 

{ 
"rxpk":[{ "tmst":3755005819, 

"chan":2, 
"rfch":1, 
"freq":868.500000, 
"stat":1, 
"modu": "LORA", 
"datr": "SF7BW125", 
"codr": "4/5", 
"lsnr":6.5, 
"rssi":-1, 
"size":18, 
"data": "QNMaASYAAQAPpyPZ955+SmY/" 

}] 
} 
 

The "data" field corresponds to the PHY payload. In the same way we capture the Acknowledgement 
Frame: 

Figure 100: PUSH_ACK frame in Wireshark 
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0010 70 6b 22 3a 5b 7b 22 74 6d 73 74 22 3a 33 37 35 pk":[{"tmst":375 
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0030 2c 22 72 66 63 68 22 3a 31 2c 22 66 72 65 71 22 , "rfch":1, "freq" 
0040 3a 38 36 38 2e 35 30 30 30 30 30 2c 22 73 74 61 :868.500000, "sta 
0050 74 22 3a 31 2c 22 6d 6f 64 75 22 3a 22 4c 4f 52 t":1, "modu": "LOR 
0060 41 22 2c 22 64 61 74 72 22 3a 22 53 46 37 42 57 A", "datr": "SF7BW 
0070 31 32 35 22 2c 22 63 6f 64 72 22 3a 22 34 2f 35 125", "codr": "4/5 
0080 22 2c 22 6c 73 6e 72 22 3a 36 2e 35 2c 22 72 73 ", "lsnr":6.5, "rs 
0090 73 69 22 3a 2d 31 2c 22 73 69 7a 65 22 3a 31 38 si":-1, "size":18 
00a0 2c 22 64 61 74 61 22 3a 22 51 4e 4d 61 41 53 59 , "data": "QNMaASY 
00b0 41 41 51 41 50 70 79 50 5a 39 35 35 2b 53 6d 59 AAQAPpyPZ955+SmY 
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Fields | Byte | Function 
-------|-------------------------------------------------------- 
  [1]  |  0   | Protocol version = 0x02 
  [2]  | 1-2  | Same token as the PUSH_DATA to acknowledge 
  [3]  |  3   | PUSH_ACK identifier = 0x01 

We find all these fields in the Wireshark frame. 

6.3 IP frame analysis  
6.3.1 The JSON format  

Application data are formatted in JSON. The JSON format is a text format composed of a succession 
of name/value pairs. In Figure 101, "gw_id" is a name and "eui-b427ebfffeae26f5" is the associated 
value. In this example, the value is a string. The objects are delimited by a pair of braces { }. Table 
24 represents the different JSON format value types. 

Value type Example 
String "coding_rate": "4/5" 

Number "spreading_factor": 12 
Object "lora": { "spreading_factor": 12, "air_time": 2465792000 } 

Boolean "service" : true 
Table 24: Value types in JSON format 

 

Figure 101: LoRaWAN gateway 
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} 

Internet  LORA Radio Transmission 
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6.3.2 The 64 base 
The gateway extracts the PHY payload from the LoRa modulation. How can we represent this binary 
data? 

Binary (base 2): The simplest way is to represent every binary element (0 and 1). This method has a 
very big drawback: the representation is complex to read because of the number of bits representing 
the message. If we want to represent a 50 bytes LoRa frame, we would have to write 400 bits '0' or 
'1'. 

Hexadecimal (base 16): We make groups of 4 bits, which makes 16 possible combinations. The 16 
characters used are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. This method has the advantage of being 
4 times more compact than the binary representation. Can we do better? 

Base 64: The bits are grouped by 6, which makes 64 possible combinations. The 64 characters used 
are those as shown in Table 25. 

Table 25: Base 64 coding characters (source Wikipedia) 

This method has the advantage of being six times more compact than the binary representation, 
using only ASCII printable characters. Can we do better? 

Base 256 (ASCII): The bits are regrouped by 8, which makes 256 possible combinations. The 256 
characters used are those of the ASCII table that you can easily find on the web. This method has 
the advantage of being eight times more compact than the binary representation. However, this 
representation has one huge disadvantage: many characters of this representation are non-
printable (line feed, space, EOF, ...) and therefore not visible. This representation is therefore useful 
for text encoding, but unusable if you want to represent binary data. 
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The best compromise we can find is the base 64. This method is often used to represent the 
payload of the LoRa frame. 

6.3.3 Example of base-64 encoding 
The explanation of the representation method in base 64 is provided through an example: we want 
to encode the hexadecimal value 0x4869. 

1. The hexadecimal data is written in binary code 

 

2. The binary elements are regrouped in blocks of 6 bits. The number of 6-bit blocks must be 
a multiple of 4 (minimum 4 blocks). If bits are missing to form a 6-bit group, zeros are added. 

 

3. If there are missing blocks to make a minimum of 4 blocks, special characters will be added. 
4. Each group of 6 bits is translated using Table 25. 

 

5. If a block of 6 bits is missing (they must be a multiple of 4), one or more are added (character 
" = " ) 

 

Result: The encoding of 0x4869 in base 64 is "SGk=". 
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 We want to encode the ASCII code "AA" in base 64. Find the procedure and show that the 
base 64 result is "QUE=". 

 

6.3.4 Uplink frame: LoRaWAN end-device to Network Server 
When the Network Server receives an IP frame from the gateway, several pieces of information can 
be easily extracted: DevAddr, SF, Bandwidth, etc... but the user data is of course encrypted (with 
the AppSKey). Without knowing the AppSKey, it is not possible to understand the content of the 
message received.  

Let's assume that the IP frame received by the Network Server is as follows: 

{ 
  "gw_id": "eui-b827ebfffeae26f6", 
  "payload": "QNMaASYABwAP1obuUHQ=", 
  "f_cnt": 7, 
  "lora": { 
    "spreading_factor": 7, 
    "bandwidth": 125, 
    "air_time": 46336000 
  }, 
  "coding_rate": "4/5", 
  "timestamp": "2019-03-05T14:00:42.448Z", 
  "rssi": -82, 
  "snr": 9, 
  "dev_addr": "26011AD3", 
  "frequency": 867300000 
} 

The Network Server will display the following information: 

Figure 102: Frame received on the Network Server side  

The gateway provides the following values: 

■ Timestamp 
■ Channel: 867.3 MHz 
■ Modulation: Lora 
■ Coding Rate: 4/5 
■ Data Rate: SF 7 / 125 kHz (DR5) 
■ Time on Air: 46,3 ms 

If we want more information, we can dive into the PHY payload. Of course, there is an encrypted 
part (frame payload), but the headers are not (see paragraph 6.1). The PHY payload in our example 
is "QNMaASYABwAP1obuUHQ=" (Base 64) or "40D31A01260007000FD686EE5074" (hexadecimal). 
The size is 14 bytes. 
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Figure 103: PHY payload 

With the hexadecimal format of the PHY Payload, we can find every field of the frame by using Figure 
91. We have the following result: 

           PHYPayload = 40D31A01260007000FD686EE5074 
 
PHYPayload = MAC Header[1 byte] | MACPayload[..] | MIC[4 bytes] 
        MAC Header    =  40 (Unconfirmed data up) 
        MACPayload    =  D31A01260007000FD6 
        Message Integrity Code  =  86EE5074 
 
MACPayload = Frame Header | Frame Port | Frame Payload ) 
        Frame Header    =  D31A0126000700 
        FPort     =  0F 
        FramePayload    =  D6 
 
Frame Header = DevAddr[4] | FCtrl[1] | FCnt[2] | FOpts[0..15] 
        DevAddr     =  26011AD3 (Big Endian) 
        FCtrl (Frame Control) =  00 (No ACK, No ADR) 
        FCnt (Frame Counter)  =  0007 (Big Endian) 
        FOpts (Frame Option)  =  

You can check the result by yourself using the online packet decoder for 1.0.x LoRaWAN protocol. 

Figure 104: LoRaWAN packet decoder 

6.3.5 Uplink: Network Server to Application Server 
We will use the same PHY payload as used in Figure 103. The NwkSKey and AppSKey used during 
this transmission are: 

■ NwkSKey: E3D90AFBC36AD479552EFEA2CDA937B9 
■ AppSKey: F0BC25E9E554B9646F208E1A8E3C7B24 

The Network Server has decoded the whole frame and checked the MIC value. If the MIC is correct 
(authentication of the frame by the NwkSKey), the Network Server will pass the content of the 
encrypted message (frame payload) to the Application Server. According to the decoding result of 
the previous chapter, the frame payload is: 
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FramePayload    =  D6 

D6 is the encrypted content. When it is decrypted with the AppSKey, we find 01. You can verify all 
this information with the online packet decoder. 

The Application Server will receive the encrypted data only if the LoRaWAN end-device has been 
registered. On our Application Server, we can verify that the received value is really 01. 

Figure 105: Frame received in the Application Server 
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7 Exporting data from the LoRaWAN server 

7.1 The services provided by the IoT platform 
We have seen so far how to send data from an end-device to the LoRaWAN server. This data needs 
to be transferred onto the user server, stored in a database, presented in different forms (tables, 
graphs...), and finally made available through a web service that the user can query. This is the role 
of an IoT platform. 

This chapter is independent from the LoRa modulation and LoRaWAN standard we have studied so 
far, and the following explanations can be easily transposed to any other protocols related to the 
Internet of Things. 

In Figure 106, on the left side you see the communication between the LoRaWAN end-device and 
the LoRaWAN servers (NS and AS). On the right side, you see the communication between the 
LoRaWAN server and the IoT platform. The IoT platform will be the link with the user and will have 
to perform the following actions: 

■ Receive data from the LoRaWAN server (uplink). 
■ Transmit data to the LoRaWAN server (downlink). 

 

Figure 106: Overall structure of a LoRaWAN network 

Note that if your Network Server provides a more secure environment with end-to-end security, you 
would have the following architecture (Figure 107). In that case, the IoT platform is the same as the 
Application Server. 
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Figure 107: Overall LoRaWAN architecture with end-to-end security 

The dialogue between the LoRaWAN server and the IoT platform can be achieved using different 
protocols that we will study in the next chapters. 

In the uplink direction, our IoT platform will have the following roles: 

1. Data import 
2. Data storage (backup) 
3. Data format into useful form (graphics, tables...) 
4. Data display for the user (web interface) 

In the downlink direction, our IoT platform will have the following role: 

1. User interface display (Button, text field, ...) 
2. User request processing 
3. Storage of the query (backup) 
4. Data transmission to the LoRaWAN server 
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Figure 108: IoT platform services 

In this chapter, we will deal only with the two items in bold in the previous list, i.e. "Data Import" 
(uplink) and "Data transmission" (downlink). 

We will see two methods to communicate: HTTP and MQTT protocols. 

7.2 Exporting data with the HTTP GET protocol 
7.2.1 Presentation of the Client - Server principle 

Like most protocols, HTTP involves information transfer between a client and a server. The client 
and server are two remote entities that wish to communicate with each other. The client makes 
requests and the server answers. The client and the server can be of any type: mail (SMTP), files 
(FTP)… Here we use HTTP client and HTTP server. 

Figure 109 shows a client, a server and the two types of messages sent: requests and replies. It is 
very important to know "who is the client?" and "who will be the server?". Indeed, we will have to 
assign a role (client or server) to our LoRaWAN server and to our IoT platform. 
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Figure 109: "Client – Server" and "Requests – Replies" 

7.2.2 Client and server designation 
The dialogue takes place between the LoRaWAN server and the user application (IoT platform). 
Figure 110 presents these two entities as well as the exchange. At the top of the figure, we see the 
LoRaWAN server (TTN, Actility, LORIOT, ChirpStack, etc…), and at the bottom, we have the user IoT 
platform. We now need to understand "who is requesting?" and "who is serving?" 

 

Figure 110: Communication between the LoRaWAN server and the IoT platform 

We will now study the two situations represented in Figure 111: 

■ Uplink: from the LoRaWAN server to the IoT platform (user application). 
■ Downlink: from the IoT platform (user application) to the LoRaWAN server. 

Let's start with the uplink situation which is the most common one. From the user application, we 
want to retrieve the data stored on the LoRaWAN server. The first idea is to make a request (1) from 
our user application in order to obtain the data. We do this by making an HTTP GET request. When 
you make an HTTP GET request to a web server, it returns the content of the HTML page it contains. 
Here, the LoRaWAN server will return the LoRaWAN data (2) in JSON format. In this case: 
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■ The user application is the HTTP client. 
■ The LoRaWAN server is the HTTP server. 

Now, let’s talk about downlink. From the LoRaWAN server, we want to retrieve the data that can be 
found on the user application. The idea is to make a request (3) from the LoRaWAN server. The user 
application replies (4). In this case: 

■ The LoRaWAN server is the HTTP client. 
■ The user application is the HTTP server. 

 

Figure 111: Uplink and downlink (HTTP GET) 

To carry out an HTTP GET Request, we need the following from the client: 

■ The URL format corresponding to the request 
■ An API Key token allowing to make a request on the HTTP server 

 

7.2.3 Setting up an HTTP GET server (uplink) 
We are going to set up an HTTP GET server. In Figure 111, this represents the frames (1) and (2). The 
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In the example below, we use the TTN community (v3.15.1) LoRaWAN server. The HTTP GET 
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We start by setting up the HTTP server on TTN. To do this, we need to go to our TTN console. TTN > 
Applications > Application name > Integration > Storage Integration > Activate Storage 
Integration. You will get access to the server as well as the temporary data backup. 

To see the APIs available to retrieve data, check the documentation in "Storage Integration API". 

User application   
IoT platform    

 

  
LoRaWAN server   

HTTP GET 
Request (1) 

HTTP GET 
Request (3) 

HTTP GET 
Reply (2)  

 

HTTP GET 
Reply (4)  

[ Uplink ] 

  

[ Downlink ] 

  

HTTP Server  

HTTP Client 

HTTP Client  

HTTP Server 

https://www.univ-smb.fr/lorawan/en/
https://www.thethingsindustries.com/docs/reference/api/storage_integration/


 www.univ-smb.fr/lorawan  |  96 
 

We are going to use the software called POSTMAN as the HTTP client which allows us to generate 
all kinds of HTTP requests. We will just have to refer to the documentation to choose the right 
formats. 

 

Figure 112: Importing data with HTTP GET request 

In POSTMAN, we will now perform an HTTP GET request. We follow the documentation and try to 
retrieve all uplink messages from an application. 

Create an API Key: TTN > Applications > your Application > API Key > Add API Key > Grant all current 
and future rights, then copy the key. 

 POSTMAN > Import > Raw Text 

curl -G 
"https://eu1.cloud.thethings.network/api/v3/as/applications/app1/p
ackages/storage/uplink_message" \ 
    -H "Authorization: Bearer $API_KEY" \ 
    -H "Accept: text/event-stream" 

 Change "app1" with your application name 
 Change $API_KEY with your API Key 
 Import and send the request. 

You should receive a JSON text message (Status 200: OK) containing your uplink frame. 
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This method is interesting for its simplicity since we only have to send HTTP GET requests whenever 
we need the uplink message as received by the LoRaWAN server. 

The first drawback is that we only worked on the uplink stream. There is no possibility to send a 
downlink message to the LoRaWAN server. No LoRaWAN server has implemented the right part of 
Figure 111 (3) and (4). 
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The second drawback is that for the uplink stream, we spend our time requesting data that 
potentially does not exist. Indeed, we request data without knowing if it has been received. If a 
sensor is non-regularly emitting values, we will have to make periodic requests with a high chance 
of receiving empty responses. 

For the downlink stream, even if we would have installed the client on the LoRaWAN server, the 
problem would still be the same. We would spend our time asking for commands whereas there is 
a good chance that the user has not sent any.  

The solution is to reorganize the client and server roles to optimize the way we transfer data. This 
is possible thanks to HTTP POST requests. 

7.3 Exporting data with the HTTP POST protocol 
For the uplink stream, we assign the roles in a different way by imagining that the user application 
will not ask the LoRaWAN server for the information, rather the LoRaWAN server will provide it by 
itself. The LoRaWAN server will therefore transmit to the user application a request called HTTP 
POST (1) to "post" the data. The response (2) is a simple acknowledgement and contains no data. In 
this case: 

■ The LoRaWAN server is the HTTP client. 
■ The user application is the HTTP server. 

For the downlink stream, the user who wants to transmit data to the LoRaWAN server must provide 
an HTTP POST (3) request and the server will send an acknowledgement. In this case: 

■ The user application is the HTTP client. 
■ The LoRaWAN server is the HTTP server. 

 

Figure 113: Uplink and downlink - HTTP POST 

User application   
IoT platform    

 

  
LoRaWAN server   

HTTP POST 
Request (1) 

HTTP POST 
Request (3) 

HTTP POST 
Reply (2)  

 

HTTP POST 
Reply (4)  

[ Uplink ] 

  

[ Downlink ] 

  

Client 

Server Client 

Server 

https://www.univ-smb.fr/lorawan/en/


 www.univ-smb.fr/lorawan  |  98 
 

7.3.1 Setting up an HTTP POST service (uplink) 

In this example, we use LORIOT’s (v7.0.14) LoRaWAN server. The HTTP POST service is called 
"HTTP Push Output". 

We want to receive the data from the LoRaWAN servers. On Figure 113, this represents the uplink 
exchanges frames (1) and (2). 

The process for other LoRaWAN servers is similar. You can find on our website the procedure 
for other servers (Actility, TTN, ChirpStack, LoRa cloud…). 

We need to set up an HTTP POST client on LORIOT's server and an HTTP POST server on our user 
application. 

 

Figure 114: Uplink HTTP POST with LORIOT 
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Now, we need to set up the HTTP POST client on LORIOT’s LoRaWAN server. 

User application  
IoT platform   

 

  
LoRaWAN server   

HTTP POST 
Request (1) 

HTTP POST 
Reply (2)  

 
[ Uplink ] 

  

Client 

Server 
https://rbaskets.in/web  

https://www.univ-smb.fr/lorawan/en/
https://rbaskets.in/
https://beeceptor.com/
https://rbaskets.in/
https://rbaskets.in/web


 www.univ-smb.fr/lorawan  |  99 
 

 LORIOT > Applications > Your Application > Output > Add New Output > HTTP Push, and 
enter your HTTP POST server address under "Target URL for POSTs". 

 

The HTTP POST client is set up. You can send data with your end-device and receive it in JSON format 
on your server. 

 

7.3.1 Setting up an HTTP server (downlink) 
We will send user data to the LoRaWAN server. In Figure 113, this represents the downlink 
exchanges frames (3) and (4). We need to set up an HTTP client on our user application, and an HTTP 
server on LORIOT. 

 

Figure 115: Downlink HTTP POST with LORIOT 
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TTN, …). 
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your server documentation the HTTP POST request format. 
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 POSTMAN > Import > Raw 

curl --location --request POST 'https://eu1.loriot.io/1/rest' \ 
--header 'Content-Type: application/json' \ 
--header 'Authorization: Bearer <API TOKEN>' \ 
--header 'Content-Type: text/plain' \ 
--data-raw '{ 
"cmd": "tx", 
"EUI": "XXXXXXXXXXXXXXXX", 
"port": XX, 
"confirmed": false, 
"data": "ABCDEF", 
"appid": "XXXXXXXX" 
}' 

With the following modifications: 

■ <API TOKEN>: Application> Access Token > Generate authentication token 
■ "EUI": DevEUI of the end-device 
■ "appid": LORIOT application ID (4 bytes) 
■ "confirmed": true or false 
■ "data": Hexadecimal data to send 

 

7.4 Presentation of the MQTT protocol 
7.4.1 MQTT Protocol Overview 

MQTT is a lightweight protocol for the Internet of Things. Rather than the classic client/server 
architecture that works with requests/replies, MQTT is based on a publisher/subscriber model. The 
difference is important, as it avoids having to request data you have no idea of when it will arrive. 
Data will be directly transmitted to the subscriber as soon as it has been received by the broker 
(central server). In order to receive the data that belongs to a topic, a subscriber must first subscribe 
(as the name suggests) to that topic. 

 

Figure 116: Publisher / Subscriber model of the MQTT protocol 
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Figure 117: Protocols used for communication with MQTT 

This can be verified by a frame capture on Wireshark. 

Figure 118: Capturing an MQTT frame with Wireshark 

Note that the TCP port used for the MQTT protocol (not encrypted) is 1883. 

 Publishers and subscribers do not need to know each other. 
 Publishers and subscribers do not have to run at the same time. 

7.4.2 Connection to the MQTT broker 
We will focus on the connection options managing the Quality of Service (QoS). To connect, a MQTT 
client sends two important pieces of information to the broker: 

A keepAlive number: This is the longest period during which the publisher or subscriber client can 
remain silent. After that, they will be considered disconnected. 

A Boolean value "cleanSession": When the client and the broker are shortly disconnected (beyond 
the announced keepAlive), we can wonder what will happen when the client connects again. 

■ cleanSession = True. The connection is non-persistent. The non-transmitted messages are 
lost regardless of the QoS (Quality of Service) level. 

■ cleanSession = False. The connection is persistent. The non-transmitted messages will 
eventually be retransmitted, depending on the QoS level. See Chapter 7.4.4. 

7.4.3 Quality of Service during a unique connection 
When the client connects to the broker, it is possible to choose the QoS level. We are talking here 
about the case of a unique connection between the moment the client connects and the moment 
when: 

■ The client closes its connection explicitly. 
■ The client has not shown any sign of life during the ''keepAlive'' time. 

In that case, we have the following Quality of Service: 
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QoS 0 ''At most once'': QoS level 0 is "no acknowledgement". The publisher sends each message to 
the broker only once. The broker sends each message to the subscribers only once. This mechanism 
does not guarantee the correct reception of MQTT messages. 

QoS 1 ''At least once'': QoS level 1 is ''with acknowledgement''. The publisher sends each message 
to the broker and waits for its confirmation. The same way, the broker sends each message to its 
subscribers and waits for their confirmation. This mechanism guarantees the reception of at least 
one MQTT message. 

However, if the acknowledgements do not arrive in time, or if they are lost, the re-transmission of 
the original message may result in a duplicate message. The last QoS level prevents this from 
happening. 

QoS 2 ''Exactly once'': QoS level 2 is ''guaranteed once''. The publisher sends a message to the broker 
and waits for confirmation. The publisher then gives the order to broadcast the message and waits 
for confirmation. This mechanism ensures that no matter how many times a message is 
retransmitted, it will only be delivered once. 

The figure below shows the frames transmitted for each QoS level. 

Figure 119: Quality of Service in MQTT protocol 

Figure 120 shows the three QoS frames captured in Wireshark. 
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Figure 120: Frame capture with QoS = 0, then QoS = 1, then QoS = 2 

Of course, a better QoS increases the network load: 

■ One frame for QoS 0 
■ Two frames for QoS 1 
■ Four frames for QoS 2 

7.4.4 Quality of Service after a reconnection  
What happens to the messages published on the broker when one or more subscribers are 
temporarily unreachable? It is possible to save messages that have been published on the broker in 
order to retransmit them the next time you connect. This possibility of saving messages must be 
activated when the client connects to the broker (cleanSession = 0). The connection will then be 
persistent. 

Table 26 summarizes the effect of the cleanSession flag and QoS level in case the client reconnects. 

Clean Session Flag Subscriber QoS Publisher QoS Behaviour 
True ( = 1) 0 / 1 / 2 0 / 1 / 2 Lost messages 
False ( = 0 ) 0 0 / 1 /2 Lost messages 
False (= 0 ) 0 /1 / 2 0 Lost messages 
False (= 0 ) 1 / 2 1 / 2 All messages are retransmitted 

Table 26: QoS value and the cleanSession flag 

 

7.4.5 MQTT Protocol topics 
A topic is a hierarchy of strings separated by the slash "/" character. Figure 121 and Table 27 give 
an example of a topic hierarchy.  

 

Figure 121: Example of MQTT topic hierarchy 
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Topic Name  Topic detail 
House/Bedroom/Temperature The Temperature of the Bedroom in the House. 
House/ Bedroom /Noise The Noise of the Bedroom in the House. 
House/Living Room/Temperature The Temperature of the Living Room in the House. 

Table 27: Example of topics 

A client can subscribe (or unsubscribe) to several branches of the hierarchy by using wildcards that 
cover several topics. Two wildcards characters exist: 

■ The plus sign "+" replaces any string on the same level. 
■ The hash sign "#"replaces any string on all subsequent levels. It must be placed at the end 

of a string. 

Topic Name  Topic detail 
Home/+/Temperature The Temperature of all Rooms in the House. 
House/# All measurements of all Rooms in the House. 

Table 28: Example of topics using wildcards 

7.4.6 Setting up an MQTT broker 
To understand how the MQTT protocol works, we set up a simple MQTT infrastructure with one 
client publisher, a broker and one client subscriber. There are lots of brokers and MQTT clients 
available. For our test, we use: 

■ The Mosquitto broker 
■ The MQTT Box (for Windows) client subscriber 
■ The MQTT Box (for Windows) client publisher 

 

Figure 122: Test infrastructure of the MQTT protocol 

The MQTT broker is common to everyone. We can either set it up on a local machine or use a public 
test MQTT broker. In our case, we will use the public Mosquitto MQTT broker. 
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7.4.7 Setting up a publisher and a subscriber MQTT 
We use the MQTTBox MQTT client. 

 Launch the MQTTBox software 
 MQTTBox > Create MQTT Client 

An MQTT client needs to know the address of the broker: 

■ Protocol: mqtt / tcp 
■ Host: test.mosquitto.org 

 

Figure 123: Configuring an MQTT Client in MQTT Box 

You can now subscribe to a topic of your choice and publish on the same topic. The subscriber should 
receive the data. Figure 124 shows a publisher (on the left) sending data "test" on the topic 
"lorawan". The subscriber (on the right) receives the data "test" as it has subscribed to the topic 
"lorawan". 

Figure 124: Test of the Mosquitto broker with MQTTBox client 

7.5 Exporting data with the MQTT protocol 
There are several possibilities to use the MQTT protocol with our LoRaWAN server. It depends on 
who is the broker and who will be the publisher/subscriber. We will see both cases and some of 
them are easier to set up than others. 

7.5.1 LoRaWAN server as a MQTT broker 
The first network architecture is simple and is presented in Figure 125. 

■ The LoRaWAN server is the MQTT Broker. 
■ You need to subscribe (1) to the proper topic to receive data. 
■ You need to publish (2) on the proper topic to send data. 
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Figure 125: MQTT connection with LoRaWAN server as a broker 

The configuration parameters that your MQTT client needs to know can be found in the 
documentation of your LoRaWAN server: 

■ The URL of the MQTT broker as exposed on your LoRaWAN server 
■ The username 
■ The password 
■ The topic to subscribe when you want to receive data 
■ The topic to publish when you want to send data 

You can find on our website www.univ-smb.fr/lorawan, the configuration details for many 
LoRaWAN servers that can act as an MQTT broker. 

 

7.5.2 LoRaWAN server as an MQTT client 
This second network architecture is presented below in Figure 126. 

■ An MQTT Broker is placed between the LoRaWAN server and the User Application. 
■ The LoRaWAN server publishes (1) to the appropriate topic to send data to the broker. 
■ You must subscribe (2) to the appropriate topic on the broker to receive data. 
■ You must publish (3) to the appropriate topic on the broker to send data. 
■ The LoRaWAN server subscribes (4) to the appropriate topic to receive data from the broker. 
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Figure 126: MQTT connection with LoRaWAN server as an MQTT client. 

The configuration parameters for the LoRaWAN server and user application MQTT client depend on 
where you set up your broker, but you always need the following information: 

■ The URL of the MQTT broker 
■ The Username to connect to your broker 
■ The Password to connect to your broker 
■ The topic you choose for the reception of your data [(A) in Figure 126] 
■ The topic you need to publish to send your data [(B) in Figure 126] 
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In this example, we use Actility’s (v3.6.0) LoRaWAN server, the public "HiveMQ" as broker and 
MQTTBox as client. 

 

Figure 127: Test of the LoRaWAN server as an MQTT client 

We first need to create and configure the MQTT client: Actility > Connections > TPX > MQTT. Then 
enter the following parameters: 

■ Hostname: broker.hivemq.com:1883 
■ MQTT Username: test 
■ MQTT Password: test 
■ Uplink topic pattern: mqtt/things/{DevEUI}/uplink 
■ Downlink topic pattern: mqtt/things/{DevEUI}/downlink 

Change {DevEUI} by entering your end-device EUI. 

 We now assign this new connection to your end-device: Actility > Device > List > Your Device 
> Connections > The MQTT connection you have just created. 

We now create the MQTT client.  

 With MQTT Box, create a client with the same parameters used above. 
 Create a subscriber on the topic "mqtt/things/{DevEUI}/uplink". You should receive uplink 

data. 
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 Create a publisher on the topic "mqtt/things/{DevEUI}/downlink". Then enter the 
following message to send a downlink frame: 

{ 
 "DevEUI_downlink": { 
  "Time": "2021-12-12T15:38:46.882+02:00", 
  "DevEUI": "Your-Device-EUI", 
  "FPort": "1", 
  "payload_hex": "9e1c4852512000220020e3831071" 
 } 
} 

You should receive the downlink message on your LoRaWAN end-device. 

7.6 Using an IoT platform 
An IoT platform is not specific to the LoRaWAN standard. On the contrary, it combines many 
protocols and heterogeneous networks in one place in order to help companies to manage their 
assets and build an end-user application. 

There are hundreds of IoT platforms which all have specific benefits and target different markets. 
The connections between the LoRaWAN server and the IoT platform are often easy and most of the 
time, they support HTTP POST and MQTT. Some IoT platforms have established partnerships with 
LoRaWAN servers in order to ease the connection. In the figure below you see a few of the direct 
connections available in Actility’s Network Server. 

 

Figure 128: Connections available in Actility’s Network Server 

Here are a few examples of IoT platforms:  

https://www.univ-smb.fr/lorawan/en/


 www.univ-smb.fr/lorawan  |  110 
 

■ Vertical M2M – CommonSense IoT platform: Independent Software 
Vendor specialized in Industrial & B2B IoT solutions with 13+ year-
experience in the IoT market .  

■ IoThink – KHEIRON IoT suite: KHEIRON offers flexible and customized 
IoT solutions to system integrators, device makers, machine builders and 
network operators. 

IoT platforms are usually available as a cloud-base service or on-premises. 

We are going to try the Vertical M2M (CommonSense IoT platform) and connect it to our LoRaWAN 
server. CommonSense IoT platform enables territories, utilities, telecom operators and industrial 
customers to deploy large-scale IoT projects by solving the three following critical issues: 

■ Deal with heterogeneity of devices and IoT technologies: LoRaWAN but also many others 
such as Sigfox, NB-IoT, LTE-M, cellular 2G-3G-4G-5G… 

■ Securely manage a fleet of heterogeneous end-devices: advanced supervision, alerting, 
commands, reporting and management features. 

■ Easily connect all IoT data and end-devices to customer's business applications: this is done 
by a low code/no code solution (called IoT APP STUDIO module) to design and build fully 
customizable IoT applications for vertical markets such as smart city, smart water or smart 
building. 

Figure 129: CommonSense IoT platform 
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8 Designing your own LoRaWAN end-device 
In this chapter, we are going to list all the LoRaWAN end-device architectures. Of course, each of 
these has its own advantages and disadvantages. A LoRaWAN end-device needs: 

1. User firmware 

The user firmware deals with the sensor measurement process, calculation, wake-up and low-power 
transition, user interface (push button, Led…) and anything else answering the client’s needs. This 
has nothing to do with the LoRaWAN protocol. 

2. A LoRaWAN protocol stack 

This is where the LoRaWAN protocol executes the sequential routine of the MAC Layer to transmit 
data. If the end-device is LoRaWAN certified, it should stick to the LoRaWAN specification to ensure 
a proper and secure transaction. One part of the protocol stack is region-specific. 

3. A LoRa radio interface 

A transceiver modulates the RF signal following the LoRa modulation standard LoRa PHY. The 
transceiver can cover multiple regions around the world but the antenna design is region-specific. 

8.1 Available LoRaWAN stacks 
If we use an end-device that already integrates a LoRaWAN stack, then we don't have to worry about 
integrating it into our component. For any other designs, we must integrate it ourselves. Here is a 
short overview of the available LoRaWAN stacks: 

1. The most famous stack is developed by Semtech. This stack is called LoRa MAC-Node™ and 
is available for all microcontrollers. It is very well maintained and follows the LoRaWAN 
specification. 

2. Another well-known stack is LMIC (LoRa Mac In C). This is the preferred stack when using 
Arduino boards. 

There are other stacks available. For example, STMicroelectronics proposes its own stack which is 
based on Semtech’s LoRa MAC-Node™. This stack has been improved to better match the 
specificities of STM32 microcontrollers. Arm MBED also proposes a LoRaWAN stack, but this one is 
not open source. 

 

8.2 Microcontroller + Transceiver architecture  
8.2.1 Presentation of this architecture 

In this type of architecture, one microcontroller manages both the LoRaWAN stack and the user 
application firmware. This requires having a LoRaWAN stack available. 

https://www.univ-smb.fr/lorawan/en/
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Figure 130: LoRaWAN end-device with microcontroller + transceiver 

The SX1262 is an example of a Semtech LoRa transceiver. It manages the physical part of the 
protocol: modulation, preamble detection.... The complete management of the LoRaWAN standard 
is carried out by a software stack implemented inside the microcontroller. The microcontroller 
drives the transceivers with a SPI bus. 

This choice is quite successful and optimized in terms of power consumption, since there is only one 
microcontroller that manages everything. On the other hand, it is a more complex solution as it is 
necessary to dive into the stack. Indeed, even if the user application and the stack are well separated 
in the code, it is quite a challenge to be certain that one does not interfere with the other as they 
run on the same MCU at the same time. You always have to be very careful not to take resources 
away from one another. 

8.2.2 Example of a development board 
We can find many development boards for Semtech transceivers on Semtech’s website. Below is 
one proposed by STMicroelectronics. The P-NUCLEO-LRWAN1 development board associates an 
STM32L073 microcontroller (Cortex M0+) with an SX1272 transceiver. 

Figure 131: P-NUCLEO-LRWAN1 package 
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8.2.3 Implementation solution 
After the prototyping period, you can move on to the realization of your own PCB. If you want to do 
the soldering yourself, you will need a reasonably equipped workshop. An interesting solution is to 
use breakout boards, which already contain the transceiver with a few useful components inside. 

Figure 132: Example of a transceiver module (NiceRF) 

 

8.3 Standalone LoRaWAN module architecture 
8.3.1 Presentation of the architecture 

In this type of architecture, we use a stand-alone module that includes: 

■ A microcontroller (which includes the application firmware and the LoRaWAN stack) 
■ A transceiver 

The module contains several components. Though the transceiver is not integrated in the 
microcontroller as we will see in section 8.4, this changes barely anything from the programmer's 
point of view. 

This solution has the advantage of simplifying the hardware part of the previous solution. On the 
other hand, we still need to manage the proximity of the application firmware and the LoRaWAN 
stack. The module has several peripherals available (ADC, I2C, UART, GPIO...) to carry out the sensor 
connection for the user application. 
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Figure 133: LoRaWAN Standalone Module 

8.3.2 Example of a module 
The Murata CMWX1ZZABZ can work in standalone mode. It will not need any other components to 
work but the antenna with impedance matching circuit.  

Figure 134: Module integrating a LoRaWAN stack and a LoRa transceiver 

Figure 135 shows the diagram of the Murata module. 

Figure 135: Inside the Murata ABZ module 

Other modules may integrate an SMA connector on the circuit to ease the antenna interface. 
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8.3.3 Example of a development board 
STMicroelectronics has a development board for the CMWX1ZZABZ component. It is the Discovery 
B-L072Z-LRWAN1 board. 

Figure 136: ST B-L072Z-LRWAN1 Discovery Board 

 

8.4 Microcontroller + LoRaWAN module architecture 
8.4.1 Presentation of this architecture 

In this type of architecture, the microcontroller only manages the user application firmware. An 
external module, driven by a serial link, manages the whole LoRaWAN protocol. The module is 
exactly the same type we saw in chapter 8.3. 

 

Figure 137: LoRaWAN end-device with microcontroller and LoRaWAN module 

We can choose any microcontroller (even 8 bits) as the LoRaWAN stack executes on the module and 
therefore does not use any resources of the user application MCU. 

 

8.4.2 Example of a LoRaWAN module 
Here are two commonly used modules: 

■ RAK Wireless: RAK3172 
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■ Murata: CMWX1ZZABZ: This is the same module as the one seen in paragraph 8.2, with the 
difference that the firmware responds to a set of AT commands sent from a master with a 
serial link. 

 

 Figure 138: Module integrating LoRaWAN stack and transceiver  

There are libraries available to use the AT command. 

This option has the considerable advantage of its simplicity. We do not have to manage anything in 
the LoRaWAN protocol because everything is done inside of the module. By sending a simple AT 
command, the LoRaWAN end-device designer only has to focus on the user application. 

The downside obviously is the fact that the overall system contains two microcontrollers: one for 
the user firmware and one for the LoRaWAN stack management in the module. This will influence 
the price of the whole system, and of course, its consumption. 

8.4.3 Example of development board 
Here is one example of a development board: 

Figure 139: Arduino MKRWAN 1310: ATMEL 32 bits microcontroller + CMWX1ZZABZ Module 

 

8.5 Wireless LoRaWAN Microcontroller Architecture  
8.5.1 Presentation of this architecture 

STMicroelectronics developed the first microcontroller with an integrated LoRa transceiver: 
STM32WL. This microcontroller comes in two flavours: single core (STM32WLEx) or dual core 
(STM32WL5x). In this architecture, the LoRaWAN stack and the user firmware are embedded in the 
same microcontroller but can be separated if we use the dual core solution. It is important to 
mention that this component is built on the same silicon die. 
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Figure 140: STM32WL dual-core microcontroller 

This is the most interesting solution in terms of cost, power consumption and footprint. 

8.5.2 Example of a development board 
STMicroelectronics proposes its own Nucleo board for this microcontroller. 

Figure 141: STM32WL Nucleo board 

The STM32WL is also available in modules to ease the prototyping. We can quote the RAK3172 from 
RAK Wireless or the LoRa-E5 from Seed Studio. 

Figure 142: RAK3172 (left) and LoRa-E5 (right) 

8.6 Summary of architectures  
A comparative summary of the solutions is given in Table 29. The characteristics provided are not 
quantified. 
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 Microcontroller  
+  

Transceiver 

LoRa 
Standalone 

Module 

Microcontroller  
+  

LoRa Module 

Wireless 
 Microcontroller 

Footprint Medium Low High Very low 
Cost High Medium Very high Low 

Code complexity High High Low High 
Table 29: Advantages and disadvantages of the different architectures 
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9 Setting up your own LoRaWAN server 
The LoRaWAN network we have worked with so far is a hybrid network (see chapter 5.1.4): we used 
our own gateway but the LoRaWAN servers did not belong to us. We will now install our own 
LoRaWAN server to create a complete private network (see chapter 5.1.2). 

Demonstrations of the overall installation process are available on our website www.univ-
smb.fr/lorawan/en/videos for ChirpStack and The Things Stack. 

 

It is also possible to set up other non-open source private LoRaWAN server on-premises. 

9.1 Preliminary information 
9.1.1 Order your own gateway 

Switching to a private network is only possible if you have your own gateways. You need to 
reconfigure them in order to point to the LoRaWAN servers that you have set up. 

 

Figure 143: Infrastructure of a private LoRaWAN network 

9.1.2 Check the Packet Forwarder 
Some LoRaWAN servers are required to use a specific packet forwarder. For ChirpStack and The 
Things Stack, Basic™ Station is the preferred deployment choice. For development, Semtech UDP 
Packet Forwarder is still available. 

9.1.3 Gateway and LoRaWAN server location 
The gateway needs to exchange data with your LoRaWAN server. There are many possibilities: 

■ The gateway and the LoRaWAN server are on the public Internet. In that case, they both 
have a public IP address and they can easily connect. 
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Figure 144: Gateway and LoRaWAN server on public Internet 

■ The gateway and the LoRaWAN server are configured in the same private network. In that 
case, they both have a common network address and they can easily connect. 

 

Figure 145: Gateway and LoRaWAN server are configured in the same private network 

■ The gateway is configured in a private network and the LoRaWAN server is configured on 
the public Internet. In this case, the ports translation process of the router will allow the 
gateway to connect to the server. Once the translation is active on the router, the LoRaWAN 
server can also send data to the gateway. That works just fine. 

 

Figure 146: Gateway in private network and LoRaWAN server on public Internet 

■ The gateway is configured on the public Internet and the LoRaWAN server is configured in 
the private network. In this case, the gateway will not be able to connect to the server if no 
static port translation is manually configured in the router. The same situation occurs if the 
gateway and the LoRaWAN server are configured in two different private networks. 
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Figure 147: Gateway on Public Internet and LoRaWAN server in a private network 

9.1.4 LoRaWAN server host 
To install our LoRaWAN server, we need a host connected to the Internet that is accessible from the 
gateway. This can be: 

■ On the gateway itself 
■ On your own local PC (Windows, Linux, MacOS) 
■ On an external computer (Raspberry PI…) 
■ On a virtual machine (Virtual Box, VMware...) 
■ On a server from a provider (OVH, AWS...) 

The diversity of architectures makes the installation quite challenging, hence we need to standardize 
the process. Docker and Docker Compose are developed for this purpose. They isolate the services 
by using containers, so they become: 

■ Independent of the OS Host (Linux, MacOS, Windows) 
■ Independent of the Hardware Host (ARM, X86 architecture) 
■ Independent of the other services installed on the machine 

Docker allows us to perform installations in an extremely simple way without having to manage 
dependencies and libraries specific to each operating system (Windows, Linux, MacOS) and 
processors used (ARM, X86). It will act as an abstraction layer that will isolate the installed service 
from the rest of the system. 
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Figure 148: Using Docker and Docker Compose to install a LoRaWAN server 

The installation of Docker and Docker Compose is platform dependant and is done as follows: 

 Install Docker: https://docs.docker.com/engine/install/ 
 Install Docker Compose: https://docs.docker.com/compose/install/ 

 

9.2 ChirpStack LoRaWAN server 
9.2.1 The ChirpStack project 

ChirpStack is an open-source project with the following simplified architecture. 

 

Figure 149: ChirpStack architecture 

ChirpStack has the two usual services: Network Server and Application Server. There is also another 
service called Gateway Bridge. Thanks to the Gateway Bridge, ChirpStack is able to communicate 
with several Packet Forwarders without impacting the Network Server side. Gateway Bridge 
converts the different Packet Forwarder protocol formats into a common MQTT protocol used by 
the ChirpStack Network Server. 

ChirpStack Gateway Bridge can interface with the Semtech UDP Packet Forwarder or Basic 
Station™. 
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9.2.2 Setting up ChirpStack with Docker 
You can use Docker if you install ChirpStack on a Raspberry PI, on a cloud server or on your local PC 
with any OS distribution and processor. Just follow the ChirpStack documentation: ChirpStack 
documentation. 

The demonstration of ChirpStack installation using Docker is available here on video:  
www.univ-smb.fr/lorawan/en/videos. 

Figure 150 shows the services (Docker container) generated with Docker Desktop on Windows. 

Figure 150: ChirpStack Docker containers (Docker Windows Desktop) 

Figure 151 shows the services (Docker container) generated with Docker on a Linux distribution. 

 

NAMES                                         PORTS 
chirpstack_chirpstack-application-server_1     0.0.0.0:8080->8080/tcp 
chirpstack_chirpstack-network-server_1         
chirpstack_chirpstack-gateway-bridge_1         0.0.0.0:1700->1700/udp 

Figure 151: ChirpStack Docker containers (Docker on a Linux Distribution) 

We notice that Gateway Bridge service listens on port 1700/udp because we use Semtech’s UDP 
Packet Forwarder. This is the port our gateway must send its data to. The Application Server listens 
on the 8080/tcp port. This is the web interface access to configure the LoRaWAN server. 
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Figure 152: Overall architecture after installing ChirpStack 

9.2.3 Setting up ChirpStack on a Raspberry Pi gateway 
The Raspberry Pi is often used to build a gateway. It is possible to install a LoRaWAN server in the 
same Raspberry Pi. Gateway and LoRaWAN server therefore become part of the same package. 
ChirpStack provides an image called chirpstack-gateway-os-full. This image is ready to run and 
includes: 

■ An open-source Linux-based embedded OS which can run various LoRaWAN gateways 
(Semtech SX1301 LoRa CoreCell, IMST, RAK, RisingHF…) 

■ A setup of Gateway Bridge, Network Server and Application Server. 

This is a one-box-solution to collect and expose IoT data quickly and easily. 

9.3 Configuring ChirpStack 
We configure ChirpStack via a graphical web interface accessible via port 8080/tcp:   
 http://@IP-ChirpStack:8080  

The default username and password are: 

■ Username: admin 
■ Password: admin 

The demonstration of ChirpStack configuration is available on our website www.univ-
smb.fr/lorawan/en/videos . 

ChirpStack Application Server is able to connect to one or multiple ChirpStack Network Server 
instances. Global admin users are able to add new Network Servers during setup. 
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Figure 153: ChirpStack with multiple Network Server 

In the Application > myApplication > Devices > myDevice > LORAWAN FRAMES tab, we can see the 
LoRaWAN frames. 

Figure 154:  LoRaWAN frames received in ChirpStack 

9.3.1 Exporting user data 
You can find on our website: 

■ The HTTP POST client request and URL format for downlink 
■ The MQTT topic to subscribe for uplink 
■ The MQTT topic to publish for downlink 
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The demonstration of user data exportation using HTTP POST and MQTT for both uplink and 
downlink is available here on video: www.univ-smb.fr/lorawan. 

  

https://www.univ-smb.fr/lorawan/en/
https://www.univ-smb.fr/lorawan/en/


 www.univ-smb.fr/lorawan  |  127 
 

10  Setting up your own user application – IoT platform  

10.1 Choices overview 
In Chapter 7, we explained how to export data from our LoRaWAN server (uplink), and to provide 
data to the LoRaWAN server (downlink). We will now look at the overall user application and present 
several complete functional architectures. Our user application needs to import, store, process, and 
display this data on a web page. This is what an IoT platform does. 

Table 30 lists the different technological choices available for prototyping this user application. This 
list is far from being exhaustive, but it explains the different functionalities we need to build. 

 

https://www.univ-smb.fr/lorawan/en/


 

 

 

What do we want? How can we make it 
happen? 

Possible technological choices 

A web page available for the user A Web server 
A User interface 

 

  

 

 
 

Graphics, tables, gauges, tables… A monitoring solution 
Libraries for Dashboard 

 

Data backup A database 
 
 

 

 

Data importation An HTTP Endpoint 
MQTT Subscriber or Publisher 

 
 

 

  
HTTP / MQTT 

Table 30: Options to build an IoT platform 



 

10.2 Building an IoT platform from scratch 
A very common choice to build an IoT platform from scratch is to use Influxdata’s open source TICK 
stack: www.influxdata.com. 

■ Telegraf: Data import 
■ InfluxdB: Storage (backup) 
■ Chronograf: Format data and dashboard display 
■ Kapacitor: We don't use this service in this demonstration 

Another famous service to create a dashboard is Grafana. It has the same purpose as Chronograf. 
We will therefore include Grafana in our test. Once again, we use Docker and Docker Compose to 
set up the services for our user application. Here is the list of containers: 

■ Telegraf 
■ InfluxDB (connection via port 8680/tcp). 
■ Grafana (connection via port 3000/tcp). 
■ Chronograf (connection via port 8888/tcp). 

When all containers are active, they are able to communicate with each other using known IP 
addresses within the Docker infrastructure. These IP addresses can be resolved by the container 
name (influxdb, telegraf, ...).  

 

Figure 155: Docker containers for our user application 

 

Figure 156: Telegraf – InfluxDB – Chronograf - Grafana 
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The entire set-up is available on Github:  
https://github.com/SylvainMontagny/dashboard-lorawan  

 

The demonstration to set up the entire IoT platform is available on video: www.univ-
smb.fr/lorawan/en/videos . 
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